本文主要是介绍MNN 执行推理(九),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
系列文章目录
MNN createFromBuffer(一)
MNN createRuntime(二)
MNN createSession 之 Schedule(三)
MNN createSession 之创建流水线后端(四)
MNN Session 之维度计算(五)
MNN Session 之几何计算(六)
MNN Session 之 CPU 算子(七)
MNN Session 之 Vulkan 算子(八)
MNN 执行推理(九)
文章目录
- 系列文章目录
- 1、Interpreter::runSession
- 1.1 Session::run
- 1.1.1 Pipeline::execute
- 1.1.1.1 VulkanBackend::onExecuteBegin
- 1.1.1.2 Execution::onExecute
- 1.1.1.3 Backend::onExecuteEnd
- 1.1.1.3.1 _finish
1、Interpreter::runSession
// source/core/Interpreter.cpp
ErrorCode Interpreter::runSession(Session* session) const {std::unique_lock<std::mutex> _l(mNet->lock);
#ifdef MNN_INTERNAL_ENABLEDTimer timer;
#endifErrorCode errorcode = session->run();#ifdef MNN_INTERNAL_ENABLEDif (shouldLog(FREQ_LOW)) {waitSessionFinish(session);float costTime = (float)timer.durationInUs() / (float)1000;logForRunSession(session, costTime, "Interpreter::runSession");}
#endif // MNN_INTERNAL_ENABLEDreturn errorcode;
}
1.1 Session::run
Pipeline
// source/core/Session.cpp
ErrorCode Session::run() const {if (mNeedResize) {MNN_ERROR("Can't run session because not resized\n");return COMPUTE_SIZE_ERROR;}// mPipelines 类型为 std::vector<std::shared_ptr<Pipeline>>for (auto& iter : mPipelines) {auto error = iter->execute();if (NO_ERROR != error) {return error;}}return NO_ERROR;
}
1.1.1 Pipeline::execute
OpCacheInfo 、BackendCache、Command、CommandBuffer
// source/core/Pipeline.cpp
// typedef std::pair<BackendCache, std::vector<OpCacheInfo>> PipelineInfo
ErrorCode Pipeline::execute() {_copyInputs();auto& mBackend = mInfo.first.cache.first;auto& mBackupBackend = mInfo.first.cache.second;mBackend->onExecuteBegin();// mInfo 类型为 std::pair<BackendCache, std::vector<OpCacheInfo>>for (auto& info : mInfo.second) {auto& buffer = info.executeBuffer;
//#define LOG_VERPOSE
#ifdef LOG_VERPOSEFUNC_PRINT_ALL(info.op->name()->c_str(), s);
#endiffor (auto& cmdP : buffer.command) {auto& cmd = *cmdP;auto code = cmd.execution->onExecute(cmd.workInputs, cmd.workOutputs);
// #define LOG_VERPOSE
#ifdef LOG_VERPOSEauto dumpT = [](Tensor* t) {auto size = TensorUtils::getRawSize(t);size = size > 10 ? 10 : size;if (t->getType() == halide_type_of<float>()) {for (int i=0; i<size; ++i) {MNN_PRINT("%f, ", t->host<float>()[i]);}} else {for (int i=0; i<size; ++i) {MNN_PRINT("%d, ", t->host<int>()[i]);}}MNN_PRINT("\n");};if (/* cmd.op->name() && cmd.op->name()->str() == "/embed/embed_/Gather_output_0"*/cmd.op->type() == OpType_Convolution) {MNN_PRINT("%s Input begin:\n", EnumNameOpType(cmd.op->type()));for (auto t : cmd.workInputs) {dumpT(t);}MNN_PRINT("%s Output begin:\n", EnumNameOpType(cmd.op->type()));for (auto t : cmd.workOutputs) {dumpT(t);}}
#endifif (NO_ERROR != code) {mBackend->onExecuteEnd();return code;}}}mBackend->onExecuteEnd();return NO_ERROR;
}
1.1.1.1 VulkanBackend::onExecuteBegin
在函数 Pipeline::execute 中调用 Backend::onExecuteBegin 函数的代码如下:
mBackend->onExecuteBegin();
onExecuteBegin 函数是个虚函数, mBackend->onExecuteBegin 调用是个多态,其基类为 Backend,此处 mBackend 为 VulkanBackend,其具体实现代码如下:
// source/backend/vulkan/image/backend/VulkanBackend.cpp
void VulkanBackend::onExecuteBegin() const {if (!mDirect) {mCmdBuffers.push_back(mCmdBuffer->get());}// FUNC_PRINT_ALL(mDynamicMemoryPool->computeSize(), f);
}
VulkanBasicExecutionDirect::onExecute
1.1.1.2 Execution::onExecute
在函数 Pipeline::execute 中调用 Execution::onExecute 函数的代码如下:
auto code = cmd.execution->onExecute(cmd.workInputs, cmd.workOutputs);
Execution::onExecute 函数是个虚函数,对于 Vulkan 来说,主要有 VulkanBasicExecutionDirect 和 VulkanBasicExecutionInDirect,我们以 VulkanBasicExecutionDirect 进行分析:
// source/backend/vulkan/image/execution/VulkanBasicExecution.cpp
ErrorCode VulkanBasicExecutionDirect::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {auto extra = static_cast<VulkanBackend *>(backend());extra->pushCommand(mCmdBuffer->get());return NO_ERROR;
}
1.1.1.3 Backend::onExecuteEnd
在函数 Pipeline::execute 中调用 Backend::onExecuteEnd 函数的代码如下:
mBackend->onExecuteEnd();
Backend::onExecuteEnd 函数是个虚函数,对于 Vulkan 来说为 VulkanBackend ,以下为其代码:
// source/backend/vulkan/image/backend/VulkanBackend.cpp
void VulkanBackend::onExecuteEnd() const {_finish();
}
1.1.1.3.1 _finish
// source/backend/vulkan/image/backend/VulkanBackend.cpp
void VulkanBackend::_finish() const {if (mCmdBuffers.empty()) {return;}VkSubmitInfo submit_info = {/* .sType = */ VK_STRUCTURE_TYPE_SUBMIT_INFO,/* .pNext = */ nullptr,/* .waitSemaphoreCount = */ 0,/* .pWaitSemaphores = */ nullptr,/* .pWaitDstStageMask = */ nullptr,/* .commandBufferCount = */ (uint32_t)mCmdBuffers.size(),/* .pCommandBuffers = */ mCmdBuffers.data(),/* .signalSemaphoreCount = */ 0,/* .pSignalSemaphores = */ nullptr};auto fenceReal = mFence->get();mFence->reset();CALL_VK(vkQueueSubmit(device().acquireDefaultDevQueue(), 1, &submit_info, fenceReal));auto res = mFence->wait();MNN_VK_CHECK(res);mCmdBuffers.clear();
}
☆
这篇关于MNN 执行推理(九)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!