PointNet++论文复现(一)【PontNet网络模型代码详解 - 分类部分】

本文主要是介绍PointNet++论文复现(一)【PontNet网络模型代码详解 - 分类部分】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PontNet网络模型代码详解 - 分类部分

专栏持续更新中!关注博主查看后续部分!

分类模型的训练:

## e.g., pointnet2_ssg without normal features

python train_classification.py --model pointnet2_cls_ssg --log_dir pointnet2_cls_ssg

python test_classification.py --log_dir pointnet2_cls_ssg

训练和测试

知识补充

PyTorch中,nn.Conv1d和nn.Conv2d是卷积神经网络(CNN)的基本构建模块。用于处理一维和二维数据。

nn.Conv1d的参数:in_channels (int):输入信号的通道数。out_channels (int):卷积产生的通道数(即卷积核的数量)。kernel_size (int or tuple):卷积核的大小。stride (int or tuple, optional):卷积步长。padding (int or tuple, optional):输入数据两侧的填充数。dilation (int or tuple, optional):卷积核元素之间的间距。groups (int, optional):连接输入和输出通道的分组数。bias (bool, optional):是否添加偏置项。

一维卷积示例:

import torchimport torch.nn as nnbatchSize=2num_features=3 # X,Y,Znum_point=4input=torch.ones(batchSize,num_features,num_point)x1=torch.Tensor([1,2,3,1]).reshape(1,4)input=torch.mul(x1,input)conv1=nn.Conv1d(3,5,1)y=conv1(input)

权重共享是卷积神经网络(CNN)的一个关键特性,尤其在处理图像、音频和文本等数据时非常重要。在一维卷积(Conv1D)的上下文中,权重共享具体意味着卷积层中的每个卷积核(或滤波器)在整个输入序列上滑动时使用相同的权重。

权重共享的含义

1、减少参数数量:在传统的全连接网络中,每个输入单元与每个输出单元之间都有一个独立的权重,导致参数数量随输入和输出大小的增长而急剧增加。在卷积网络中,由于使用了权重共享,同一个卷积核在不同位置的计算重复使用相同的权重,大大减少了模型的参数数量。

2、提高效率:权重共享不仅减少了模型的存储需求,也提高了计算效率,因为它减少了需要学习的参数数量。这使得卷积网络能够更快地训练,并减少了过拟合的风险。

3、捕捉局部特征:卷积操作通过卷积核在输入序列上的滑动来捕捉局部特征。权重共享保证了模型在整个序列的不同位置以相同的方式响应相似的模式或特征(输出特征的某一通道数值由一组权重(核)来决定,即该通道的所有值都共享同一组权重),这对于处理图像、音频和序列数据非常有用,因为这些类型的数据通常包含重复出现的局部模式。

一维卷积层和全连接层的区别

权重共享的一维卷积(Conv1D)层和全连接(Fully Connected,FC)层在结构和功能上有显著的区别,这些区别影响了它们在处理数据时的效率和适用性。以下是这两种网络层之间的主要区别:

权重共享与参数数量

权重共享的Conv1D层:在一维卷积层中,同一个卷积核(一组权重)在整个输入序列上滑动以提取特征,这意味着相同的权重被用于输入的不同部分。这种权重共享显著减少了模型的参数数量,因为不需要为输入数据的每个不同位置学习一组独立的权重。

全连接层:在全连接层中,每个输入单元都与每个输出单元连接,并且每个连接都有一个独立的权重。这意味着FC层的参数数量随输入和输出单元的数量线性增长,对于大型数据集或高维数据,会导致参数数量非常庞大,增加了计算成本和过拟合的风险。

局部连接与全局连接

Conv1D层:卷积操作侧重于提取输入序列的局部特征。每个卷积核在输入上滑动,只关注输入的一个局部区域,这有助于捕捉如边缘、纹理等局部模式,这对于时间序列分析、音频处理和文本处理等任务非常有效。

全连接层:在全连接层中,每个输入都与输出的每个单元连接,这意味着全连接层在处理输入时考虑了所有的全局信息。这使得FC层能够学习输入单元之间的复杂和非局部的关系,但也使其对于高维数据效率低下。

参数共享与空间不变性

Conv1D层的参数共享:通过在整个输入序列上重复使用相同的权重,卷积层能够对输入数据的平移表现出某种程度的不变

这篇关于PointNet++论文复现(一)【PontNet网络模型代码详解 - 分类部分】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/838235

相关文章

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Mysql 中的多表连接和连接类型详解

《Mysql中的多表连接和连接类型详解》这篇文章详细介绍了MySQL中的多表连接及其各种类型,包括内连接、左连接、右连接、全外连接、自连接和交叉连接,通过这些连接方式,可以将分散在不同表中的相关数据... 目录什么是多表连接?1. 内连接(INNER JOIN)2. 左连接(LEFT JOIN 或 LEFT

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

详解Java中的敏感信息处理

《详解Java中的敏感信息处理》平时开发中常常会遇到像用户的手机号、姓名、身份证等敏感信息需要处理,这篇文章主要为大家整理了一些常用的方法,希望对大家有所帮助... 目录前后端传输AES 对称加密RSA 非对称加密混合加密数据库加密MD5 + Salt/SHA + SaltAES 加密平时开发中遇到像用户的

Springboot使用RabbitMQ实现关闭超时订单(示例详解)

《Springboot使用RabbitMQ实现关闭超时订单(示例详解)》介绍了如何在SpringBoot项目中使用RabbitMQ实现订单的延时处理和超时关闭,通过配置RabbitMQ的交换机、队列和... 目录1.maven中引入rabbitmq的依赖:2.application.yml中进行rabbit