PaddleDetection算法分析(8)

2024-03-23 08:18

本文主要是介绍PaddleDetection算法分析(8),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2021SC@SDUSC

接上文 继续torchvision Faster-RCNN ResNet-50 FPN的分析

FPN

FPN,即Feature Pyramid Networks,是一种多尺寸,金字塔结构深度学习网络,使用了FPN的Faster-RCNN,其测试结果超过大部分single-model,包括COCO 2016年挑战的获胜模型。其优势是对小尺寸对象的检测。

FPN代码解读 

torchvision中包含了ResNet50 FPN完整的源代码(这里参考的是torchvision 0.7.0里面的代码),这里就解读一下对应的实现,为了解释流畅,尽量采用ResNet-50中的layer name,以及对应的参数:

FPN结构:

(fpn): FeaturePyramidNetwork((inner_blocks): ModuleList((0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))(1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))(2): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))(3): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1)))(layer_blocks): ModuleList((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(extra_blocks): LastLevelMaxPool())

FPN处理数据的代码看看如下代码,就能知道对应的流程:

class FeaturePyramidNetwork(nn.Module):......def forward(self, x):# type: (Dict[str, Tensor]) -> Dict[str, Tensor]"""Computes the FPN for a set of feature maps.Arguments:x (OrderedDict[Tensor]): feature maps for each feature level.Returns:results (OrderedDict[Tensor]): feature maps after FPN layers.They are ordered from highest resolution first."""# unpack OrderedDict into two lists for easier handlingnames = list(x.keys())x = list(x.values())last_inner = self.get_result_from_inner_blocks(x[-1], -1)results = []results.append(self.get_result_from_layer_blocks(last_inner, -1))for idx in range(len(x) - 2, -1, -1):inner_lateral = self.get_result_from_inner_blocks(x[idx], idx)feat_shape = inner_lateral.shape[-2:]inner_top_down = F.interpolate(last_inner, size=feat_shape, mode="nearest")last_inner = inner_lateral + inner_top_downresults.insert(0, self.get_result_from_layer_blocks(last_inner, idx))if self.extra_blocks is not None:results, names = self.extra_blocks(results, x, names)# make it back an OrderedDictout = OrderedDict([(k, v) for k, v in zip(names, results)])return out

这里要指出来的是,如何在pytorch中实现2x up:

F.interpolate(last_inner, size=feat_shape, mode="nearest")


这里feat_shape就是2x up之后的shape.
另外一个需要指出的是results,就是存放了每层layer_block_conv的输出,然后送入RPN网络进行背景前景二分类和Bounding-Box回归,在top层支持检测出大的object,越往下越小的对象将被检测出来。

下面是整理的全局图 可以很好地理解整体结构

 这里左边对应的是layer name,比如conv5_x,这是和ResNet表中layer name可以对应起来。左边的部分称为Bottom-up pathway,右边称为Top-down pathway,ResNet从conv2_x~conv5_x,每层的输出都会输出一份到右边的pathway,这里称之为lateral connections,总的来说可以用下面公式表示表示FPN:
                  FPN=Top-downpathway+laterlconnections


接下来是对另一部分讲解

这篇关于PaddleDetection算法分析(8)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837701

相关文章

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛