深度学习论文随记(三)GoogLeNet-2014年

2024-03-23 06:38

本文主要是介绍深度学习论文随记(三)GoogLeNet-2014年,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习论文随记(三)GoogLeNet

Going Deeper with Convolutions

Author: Christian Szegedy, Wei Liu,  Yangqing Jia, etl.

Year 2014

1、导引

2014年google参加ILSVRC竞赛,以此网络模型获得第一名的成绩。此模型名为GoogLeNet,而不是GoogleNet.是为了向CNN的开山鼻祖LeNet致敬。

该模型共有22层,利用multi-scaletraining。层数虽然变多,但是参数总量却只有7M,比AlexNet少多了,可是准确率却提高了:Top-5的错误率只有6.66%。

GoogLeNet模型成功证明了用更多的卷积,更深的网络层数可以得到更好的预测效果。

 

2、模型解读

 

Inception结构:

Why?

如果单纯的加深或者拓宽网络模型,会产生两个较为突出的问题:

①网络规模变大会产生更多参数,从而容易导致过拟合的发生。

②网络规模变大会使得计算量变大,消耗更多的计算资源。

解决这两个问题的方法是将全连接甚至是一般的卷积转化为稀疏矩阵。但是由于计算机计算时,对于非均匀稀疏数据这种东西的计算效率很差(这个其实很容易理解,你留意一下就会发现计算机在很多时候,都对矩形、矩阵有着难以置信的执着。),所以AlexNet模型启用了全连接层(全连接层说白了就是进行了矩阵乘法,)其目的是为了更好地优化并行运算。

 

所以,针对:”既要使得网络具有稀疏性,又想利用密集矩阵的高计算性能”这一个问题,人们提出了一种思路:将稀疏矩阵聚类为较为密集的子矩阵来提高计算性能,Google团队就顺着这一个思路,提出来了Inception结构。

 

Inception 结构的主要思路是怎样用密集成分来近似最优的局部稀疏结构

首先提出下图这样的基本结构:



本模型的分析: 
1 . 采用不同大小的卷积核意味着不同大小的感受野,最后拼接意味着不同尺度特征的融合; 
2 . 之所以卷积核大小采用1、3和5,主要是为了方便对齐。设定卷积步长stride=1之后,只要分别设定pad=0、1、2,那么卷积之后便可以得到相同维度的特征,然后这些特征就可以直接拼接在一起了; 
3 . 文章说很多地方都表明pooling挺有效,所以Inception里面也嵌入了。 
4 . 网络越到后面,特征越抽象,而且每个特征所涉及的感受野也更大了,因此随着层数的增加,3x3和5x5卷积的比例也要增加。但是5x5的卷积核会带来巨大的计算量,所以采用1x1的卷积核进行降维处理。


所以他们又做了如下的改进:




GoogLeNet:





共有22层,原始输入的数据大小为224x224x3.

3、特点

·采用了模块化的结构,方便增添和修改

·网络最后用的是averagepooling层替代全连接层,将Top-1成功率提高了一点

·网络移除了全连接层,但是保留了Dropout层

·网络增加了两个辅助的softmax用于向前传导梯度,避免梯度消失。



这篇关于深度学习论文随记(三)GoogLeNet-2014年的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837458

相关文章

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学