Pytorch打怪路(一)pytorch进行CIFAR-10分类(3)定义损失函数和优化器

2024-03-23 06:32

本文主要是介绍Pytorch打怪路(一)pytorch进行CIFAR-10分类(3)定义损失函数和优化器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

pytorch进行CIFAR-10分类(3)定义损失函数和优化器

我本打算把这一步的内容也归并到第二步定义网络模型中去,因为我觉得它们其实可以宏观上看成一个大部分,

但是既然官方教程中分成了5步,那我也就依照这个来,免得各位看官被我给搞昏了。

Pytorch打怪路(一)pytorch进行CIFAR-10分类(1)CIFAR-10数据加载和处理

Pytorch打怪路(一)pytorch进行CIFAR-10分类(2)定义卷积神经网络

Pytorch打怪路(一)pytorch进行CIFAR-10分类(3)定义损失函数和优化器(本文)

Pytorch打怪路(一)pytorch进行CIFAR-10分类(4)训练

Pytorch打怪路(一)pytorch进行CIFAR-10分类(5)测试

1.直接上代码

import torch.optim as optim          #导入torch.potim模块criterion = nn.CrossEntropyLoss()    #同样是用到了神经网络工具箱 nn 中的交叉熵损失函数
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)   #optim模块中的SGD梯度优化方式---随机梯度下降

2.涉及知识点

①优化器

pytorch将深度学习中常用的优化方法全部封装在torch.optim之中,所有的优化方法都是继承基类optim.Optimizier


图中提到了如果想要把模型搬到GPU上跑,就要在定义优化器之前就完成.cuda( )这一步


2.损失函数

损失函数是封装在神经网络工具箱nn中的,包含很多损失函数,如图所示;


此例中用到的是交叉熵损失,criterion = nn.CrossEntropyLoss() 详情如下:



基本上这一步没什么好说的,就是在众多的优化器方法和损失函数中选择就ok,具体选什么就由自己情况定

这篇关于Pytorch打怪路(一)pytorch进行CIFAR-10分类(3)定义损失函数和优化器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837436

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

SpringBoot使用minio进行文件管理的流程步骤

《SpringBoot使用minio进行文件管理的流程步骤》MinIO是一个高性能的对象存储系统,兼容AmazonS3API,该软件设计用于处理非结构化数据,如图片、视频、日志文件以及备份数据等,本文... 目录一、拉取minio镜像二、创建配置文件和上传文件的目录三、启动容器四、浏览器登录 minio五、

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传