Pytorch打怪路(一)pytorch进行CIFAR-10分类(2)定义卷积神经网络

2024-03-23 06:32

本文主要是介绍Pytorch打怪路(一)pytorch进行CIFAR-10分类(2)定义卷积神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pytorch打怪路(一)pytorch进行CIFAR-10分类(2)定义卷积神经网络

注:官方文档地址--  http://pytorch.org/docs/0.3.0/index.html

我的系列博文

Pytorch打怪路(一)pytorch进行CIFAR-10分类(1)CIFAR-10数据加载和处理

Pytorch打怪路(一)pytorch进行CIFAR-10分类(2)定义卷积神经网络(本文)

Pytorch打怪路(一)pytorch进行CIFAR-10分类(3)定义损失函数和优化器

Pytorch打怪路(一)pytorch进行CIFAR-10分类(4)训练

Pytorch打怪路(一)pytorch进行CIFAR-10分类(5)测试

1、简述

官网tutorial中显示图片的那部分我就直接省略了,因为跟训练网络无关,只是for fun
这一步骤虽然代码量很少,但是却包含很多难点和重点,执行这一步的代码需要包含以及神经网络工具箱torch.nn、以及神经网络函数torch.nn.functional,如果有兴趣的同学去看一下官网的Docs,会发现这俩模块所占的篇幅是相当相当的长啊,不知道一下午能不能看完….
所以我在这里也就简要地、根据此例所给的代码,来讲解一下即可,更多的内容还是参考官方文档更实在,虽然更费时……


注意:虽然官网给的程序有这么一句 from torch.autograd import Variable,但是此步中确实没有显式地用到variable只能说网络里运行的数据确实要以variable的形式存在,在后面我们会讲解这个内容
所以这节先不讨论,当然代码写在那里是没问题的,反正后面会用

2.代码

# 首先是调用Variable、 torch.nn、torch.nn.functional
from torch.autograd import Variable   # 这一步还没有显式用到variable,但是现在写在这里也没问题,后面会用到
import torch.nn as nn
import torch.nn.functional as Fclass Net(nn.Module):                 # 我们定义网络时一般是继承的torch.nn.Module创建新的子类def __init__(self):    super(Net, self).__init__()   # 第二、三行都是python类继承的基本操作,此写法应该是python2.7的继承格式,但python3里写这个好像也可以self.conv1 = nn.Conv2d(3, 6, 5)       # 添加第一个卷积层,调用了nn里面的Conv2d()self.pool = nn.MaxPool2d(2, 2)        # 最大池化层self.conv2 = nn.Conv2d(6, 16, 5)      # 同样是卷积层self.fc1 = nn.Linear(16 * 5 * 5, 120) # 接着三个全连接层self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):                  # 这里定义前向传播的方法,为什么没有定义反向传播的方法呢?这其实就涉及到torch.autograd模块了,# 但说实话这部分网络定义的部分还没有用到autograd的知识,所以后面遇到了再讲x = self.pool(F.relu(self.conv1(x)))  # F是torch.nn.functional的别名,这里调用了relu函数 F.relu()x = self.pool(F.relu(self.conv2(x)))x = x.view(-1, 16 * 5 * 5)  # .view( )是一个tensor的方法,使得tensor改变size但是元素的总数是不变的。#  第一个参数-1是说这个参数由另一个参数确定, 比如矩阵在元素总数一定的情况下,确定列数就能确定行数。#  那么为什么这里只关心列数不关心行数呢,因为马上就要进入全连接层了,而全连接层说白了就是矩阵乘法,#  你会发现第一个全连接层的首参数是16*5*5,所以要保证能够相乘,在矩阵乘法之前就要把x调到正确的size# 更多的Tensor方法参考Tensor: http://pytorch.org/docs/0.3.0/tensors.htmlx = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return x# 和python中一样,类定义完之后实例化就很简单了,我们这里就实例化了一个net
net = Net()

3.涉及知识点

①神经网络工具箱 torch.nn

这是一个转为深度学习设计的模块,我们来看一下 官方文档中它的目录



可以看到,nn模块中有很多很多的子模块,其中较为重要的,也是在咱们上面的程序中出现过的一些内容包括:

a.  Container中的Module,也即nn.Module


看一下nn.Module的详细介绍

可知, nn.Module是所有神经网络的基类,我们自己定义任何神经网络, 都要继承nn.Module!class Net(nn.Module):

b.  convolution layers


我们在上面的代码块中用到了Conv2d:  self.conv1 = nn.Conv2d(3, 6, 5)    self.conv2 = nn.Conv2d(6, 16, 5)

例如Conv2d(1,20,5)的意思就是说,输入是1通道的图像,输出是20通道,也就是20个卷积核,卷积核是5*5,其余参数都是用的默认值

c.  pooling layers


可以看到有很多的池化方式,我们上面的代码采用的是Maxpool2d: self.pool = nn.MaxPool2d(2, 2)

d.  Linear layer


我们代码中用的是线性层Linear:  self.fc1 = nn.Linear(16 * 5 * 5, 120)      self.fc2 = nn.Linear(120, 84)        self.fc3 = nn.Linear(84, 10)

e.   Non-linear Activations

要注意,其实这个例子中的非线性激活函数用的 并不是 torch.nn模块中的这个部分,但是 torch.nn模块中 有这个部分,所以我还是提一下。
此例中的激活函数用的其实是 torch.nn.functional 模块中的函数。它们是有区别的,区别下文继续讲。现在先浏览一下这个部分的内容即可:

可以看出,torch.nn 模块中其实也有很多激活函数的,只不过我们此例用的不是这里的激活函数!!!

②torch.nn.functional


这个模块包含的内容如图所示
t orch.nn中大多数layer在torch.nn.funtional中都有一个与之对应的函数。二者的区别在于:
torch. nn.Module中实现layer的都是一个特殊的类,可以去查阅,他们都是以class xxxx来定义的, 会自动提取可学习的参数
nn.functional中的函数,更像是纯函数,由def function( )定义,只是进行简单的 数学运算而已。
说到这里你可能就明白二者的区别了,functional中的函数是一个确定的不变的运算公式,输入数据产生输出就ok,
而深度学习中会有很多权重是在不断更新的,不可能每进行一次forward就用新的权重重新来定义一遍函数来进行计算,所以说就会采用类的方式,以确保能在参数发生变化时仍能使用我们之前定好的运算步骤。
所以从这个分析就可以看出什么时候改用nn.Module中的layer了:
如果模型有可学习的参数,最好使用nn.Module对应的相关layer,否则二者都可以使用,没有什么区别。
比如此例中的Relu其实没有可学习的参数,只是进行一个运算而已,所以使用的就是functional中的relu函数,
而卷积层和全连接层都有可学习的参数,所以用的是nn.Module中的类。
不具备可学习参数的层,将它们用函数代替,这样可以不用放在构造函数中进行初始化。

定义网络模型,主要会用到的就是torch.nn 和torch.nn.funtional这两个模块,这两个模块值得去细细品味一番,希望大家可以去读一下官方文档



这篇关于Pytorch打怪路(一)pytorch进行CIFAR-10分类(2)定义卷积神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837435

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

遮罩,在指定元素上进行遮罩

废话不多说,直接上代码: ps:依赖 jquer.js 1.首先,定义一个 Overlay.js  代码如下: /*遮罩 Overlay js 对象*/function Overlay(options){//{targetId:'',viewHtml:'',viewWidth:'',viewHeight:''}try{this.state=false;//遮罩状态 true 激活,f

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

Python脚本:对文件进行批量重命名

字符替换:批量对文件名中指定字符进行替换添加前缀:批量向原文件名添加前缀添加后缀:批量向原文件名添加后缀 import osdef Rename_CharReplace():#对文件名中某字符进行替换(已完结)re_dir = os.getcwd()re_list = os.listdir(re_dir)original_char = input('请输入你要替换的字符:')replace_ch

用Pytho解决分类问题_DBSCAN聚类算法模板

一:DBSCAN聚类算法的介绍 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,DBSCAN算法的核心思想是将具有足够高密度的区域划分为簇,并能够在具有噪声的空间数据库中发现任意形状的簇。 DBSCAN算法的主要特点包括: 1. 基于密度的聚类:DBSCAN算法通过识别被低密