南京观海微电子---MIG IP核的使用——DDR接口专栏(二)

2024-03-23 04:36

本文主要是介绍南京观海微电子---MIG IP核的使用——DDR接口专栏(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 前言

本文将向大家介绍Xilinx FPGA下的MIG IP核使用方法。通过该IP核,用户可以对片外DDR存储颗粒进行读写操作。

2. DDR器件型号

在使用MIG IP核前,我们需要了解待读写的DDR存储颗粒的型号。只有确定了型号,才能对MIG IP核进行正确地设置。这里我们以型号为MT41J256M16HA-125的DDR颗粒举例。

DDR颗粒的型号命名规则如下图所示:

DDR颗粒 I/O管脚时钟频率:

根据Speed Grade中的“-125”我们可以找到图中的tCK = 1.25ns,对应算出DDR颗粒支持的最大IO时钟频率:1/1.25ns = 800Mhz。此处的IO时钟频率也就是DDR3的频率。

DDR颗粒的位宽和存储容量:

根据Configuration中的256M16,可以得知该DDR颗粒的数据位宽是16位,并且存储容量为512MB(256M*16bit = 512MB)。

如果我们将4个该DDR颗粒组成一组,则可以构成一个数据位宽位64bit,最大时钟频率为800MHz,存储容量为2GB的DDR存储器。

DDR颗粒的带宽:

由于DDR传输数据方式是在时钟上升和下降沿都进行传输,所以芯片的一根数据线上的传输速率为2*800Mhz = 1600MT/s,即1600Mbit/s。

如果我们将4个该DDR颗粒组成一组,数据传输带宽计算如下

1600Mbit/s x 16 x 4 = 12.5GByte/s

3. FPGA选型

DDR颗粒的选型也会影响到FPGA型号的选择。比如上面选择的DDR颗粒带宽为1600MT/s,则一定要选择速度等级支持大于等于1600MT的FPGA器件,这样才能发挥该DDR颗粒的最大带宽效率。

我们选用的FPGA型号为XC7VX690T,速度等级为-2,通过在Xilinx官网查询DS183文档可知,该器件支持的最大DDR频率为1866MT,因此我们选用的FPGA理论上是可以100%发挥型号为MT41J256M16HA-125 DDR的最大传输带宽的。

图片

4. MIG IP核的设置

下面将详细的介绍Xilinx MIG IP核的使用方式,通过该IP核,用户可以对片外DDR存储颗粒进行读写操作。

(1) 创建新的Xilinx vivado项目,并将FPGA器件选为XC7VX690T,速度等级为-2。

(2) 在Vivado的“Flow Navigator”窗格中,选择“IP Catalog”。在IP目录中搜索“MIG”或“Memory Interface Generator”关键词。双击要使用的IP核。

图片

(3) IP配置窗口第一页显示了工程使用的FPGA器件型号,用户需要确认才能进行下一步。

注意,可能有用户发现文章弹出的界面和自己的MIG IP核设置界面不太一样,这个是由于工程选用了不同的FPGA器件,不同的FPGA器件使用的MIG IP是有细微不同,比如我们这个IP核名称后面显示是MIG 7 Series,即该MIG IP是专门用于Xilinx 7系列FPGA的。

图片

(4) 在MIG Output Options选项中选择Create Design,用于创建新的内存控制器设计。在Compent Name一栏中输入待创建的组件名称。

Multi-Controller一栏中选择需要生成的控制器数量,此处我们默认选择1

暂时不勾选AXI4 Interface复选框,本文我们先生成一个具备常规的DDR接口的IP核。如果勾选了该选项,则会生成一个AXI4接口的MIG IP核,用户只用遵循AXI接口协议,便可读写AXI接口的MIG IP核。

图片

(5) 在Pin Compatible FPGA页面中列出了和本工程使用的FPGA具有相同封装的其他型号FPGA,如果需要IP生成的设计文件兼容其他型号FPGA,在列表中勾选相应型号即可。

图片

(6) 在Pin Compatible FPGA页面中,选择DDR3 SDRAM类型。

图片

(7) 在Options for Controller 0是关键的配置一步。

Clock Period为DDR工作的时钟频率。在第二章中我们选用的DDR颗粒最高工作主频为800MHz,因此此处我们填写1250ps即800MHz。

PYH to Controller Clock Ratio为PYH工作时钟到DDR控制器工作时钟的转换比例。图中默认设置为4:1,即PHY的工作频率为800MHz,DDR控制器的工作时钟为200MHz。

图片

Memory Part设置为第二章的DDR器件,MT41J256M16HA-125。

MT41J256M16HA颗粒位宽为16bit,由于我们使用的内存条级联了4个该DDR颗粒,因此Data Width设置为16*4=64bit。

Number of Bank Machines一栏显示了该设计配置支持的Bank Machine的数量。如果追求DDR的读写效率,建议该栏选择最大的数量。如果FPGA资源比较紧张,可以将该数量设小些以节约FPGA的片上资源。

其它配置都使用默认值。

图片

(8) 在Memory Options设置页:

Input Clock Period: 选择5000ps (200MHz)选项,该时钟为DDR PLL的输入时钟。

Output Driver Impedance Control: 设置相应的输出匹配阻抗。根据所选的DDR器件手册,来设置该参数。例如,RZQ/6对应输出阻抗为40Ω,RZQ对应240Ω。

其它参数保持默认,不需要修改。

图片

(9) FPGA Options设置页:

System Clock: 为该MIG IP核的系统输入时钟,此处需要选择时钟类型是差分、单端还是“No buffer”类型。注意,如果选择“No buffer”,则该系统输入时钟必须是FPGA的内部时钟。

Reference Clock: 为MIG IP核的参考时钟。此处也是需要选择时钟类型。注意,如果System Clock选择的频率范围为199~201MHz,则Reference Clock类型复选框中会出现“Use System Clock”选项。我们为了简化时钟电路的设计,此处选择“Use System Clock”选项。

System Reset Polarity: 为MIG IP核的复位电平,HIGH代表复位电平为高,LOW代表复位电平为低。

Debug Signals Control 和 Sample Data Depth选项为给该IP添加ILA调试项。

XADC选项要使能,其它参数保持默认,不需要修改。

图片

(10) FPGA管脚分配:我们选择Fixed Pin Out 模式,然后根据自己的FPGA开发板原理图填写管脚分配界面。填写完所有管脚后,点击“Validate”按钮。Vivado会自检填写的所有管脚是否符合基本的规则,如果检测通过,便可以点击“Next”按钮进入下一步。

图片

图片

(11) System Signals Selection配置页:该页主要设置连接DDR系统时钟/参考时钟的FPGA输入管脚。由于前面我们设置了参考时钟使用系统时钟的选项,此处只用设置系统时钟管脚即可。

图片

(12) 完成MIG IP核设置。后面MIG设置页面都是些参数总结页面,都直接点击“Next”按钮即可。最后一页点击“Generate”按钮即Vivado开始根据以上参数生成对应的MIG IP核。

图片

5. 生成MIG IP核例程

对刚生成的IP核不知道如何使用,可以采用以下两种方法:

(1) 查找该IP核的User Guide文档,学习使用方法。MIG (7 Series)的IP核User Guide对应的文档编号为UG586。

(2) 查看该IP核的官方示例工程。工程的打开方式如下,右键点击刚生成好的IP核,选择“Open IP Example Design..”选项。

图片

选择待存放Example Design的具体路径,点击“OK”选项。

图片

此时Vivado会生成并自动打开示例工程。示例工程的结构如下图。

图片

这篇关于南京观海微电子---MIG IP核的使用——DDR接口专栏(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837155

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud