【论文精读】MAE

2024-03-22 22:40
文章标签 论文 精读 mae

本文主要是介绍【论文精读】MAE,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要

       将掩码重建任务从nlp引入到cv,提出非对称掩码自编码器。

框架

image

概述

       如上图,本文提出掩码自编码器,即将给定原始信号的部分观测值的情况下重建原始信号,编码器将观察到的部分信号(没有掩码标记)映射到潜在表示,采用轻量级的解码器从潜在表示重建原始信号,模型采用了非对称设计。

掩码

       类似ViT,将图像划分为规则的非重叠patch,按照均匀分布对无替换的随机patch进行采样,即随机抽样。随后屏蔽(删除patch)其余未被采样的patch。
image
image
       采用高屏蔽率(删除patch的比率)的随机抽样可以在很大程度消除了冗余,从而创建了一个不能通过可见的邻近patch外推而轻松解决的任务(如上几幅图)。而均匀分布可以防止中心归纳偏好(图像中心附近有更多的掩码块)。

MAE编码器

       编码器为原始ViT,且只应用未屏蔽的patch,并采用线性投影计算这些patch的patch embedding,并添加position embedding,然后通过一系列Transformer块处理结果集。

MAE解码器

       如图1,解码器的输入是完整的patch集,包括编码器输出的未屏蔽patch的特征token和mask tokens。其中,每个mask tokens都是一个共享的、可学习的向量,表示要预测的缺失patch。随后向这个完整patch集合添加position embedding。

       解码器仅在预训练任务中重建图像,而其余的下游任务形式多种多样,实际应用时不用解码器。所以解码器的设计和编码器是解耦的,解码器可以设计得简单、轻量(比编码器更窄、更浅。窄:对应通道数;浅:对应深度)。

目标重建

       MAE通过预测每个掩码patch的像素值来重建输入。解码器的最后一层为线性投影,其输出通道的数量等于patch中的像素值的数量,其输出代表输入patch的像素值向量,并将输出重塑以形成重建的图像。损失函数为计算像素空间中重建图像和原始图像之间的均方误差(MSE)。且仅在掩码patch上计算损失。

       本文还研究了一种变体,其重建目标是每个掩码 patch的归一化像素值。即计算一个掩码 patch中所有像素的均值和标准差,然后用来归一化这对应的掩码patch作为目标。实验中,使用归一化像素作为重建目标可以提高表示质量。

实现

  • 将输入图像划分为patches ( B , C , H , W ) → ( B , N , P × P × C ) (B,C,H,W)→(B,N,P \times P \times C) (B,C,H,W)(B,N,P×P×C)
  • 对所有patch计算patch embedding,生成tokens,并加入position embeddings,维度变换为 ( B , N , P × P × C ) → ( B , N , d i m ) (B,N,P \times P \times C)→(B,N,dim) (B,N,P×P×C)(B,N,dim)
  • 根据预设的掩码比例(75%),使用服从均匀分布的随机采样策略采样一部分前一步骤得到的tokens送给编码器,另一部分被mask掉
  • 将编码器编码后的tokens与masked tokens按照原先在patch形态时对应的次序拼在一起,输入给解码器
  • 解码器解码后取出masked tokens对应的部分送入到全连接层,对masked patches的像素值进行预测,最后将预测结果与masked patches进行比较,计算MSE loss

实验

ImageNet实验

       实验在ImageNet-1K(IN1K)训练集上采用ViT进行自监督预训练,然后进行监督训练,评估端到端微调或线性检测的表现。

实验配置

       ViT架构实验遵循标准的ViT架构。其有一个Transformer块的堆栈,其中每个块由一个多头自注意力块和一个MLP块组成,两者都具有LayerNorm(LN)。编码器以LN结尾。由于MAE编码器和解码器宽度不同,在编码器之后采用线性投影层对其进行调整匹配。MAE向编码器和解码器输入添加了位置嵌入,没有使用相对位置或层缩放。

       从编码器输出中提取特征以进行微调和线性探测。由于ViT有一个类标记,为了适应这种设计在MAE预训练中向编码器输入添加了一个辅助token。此token被视为在线性探测和微调中训练分类器的类token,实验证明MAE在没有这个token的情况下(使用平均池化)也同样表现得很好。
image
       上图为预训练配置。相对于ViT官方源码,没有使用color jittering、drop path、gradient clip。
image
       上图为微调及部分微调配置。微调使用layer-wise learning rate decay,部分微调只微调编码器的最后几个层。
image
       上图为线性检测配置。线性检测和微调有不同,regularization对线性检测可能会损失模型性能,因此舍弃了一些regularization strategies,例如mixup、cutmix、drop path、color jittering。并对输入执行normalization,同时在预训练特征层和线性分类层之间加上一个额外的BN,可以实现特征的标准化。

消融实验

image
       上图实验mask比例。观察到微调和线性检测时,mask比例逐渐升高,性能更好。 线性检测近似线性增涨,而微调则是mask比例在30%~40%时激增,而后就倾向于饱和。

       线性检测时为mask比例越高,预训练时得到的编码器越强,这部分在下游任务中不再被训练的了,所以其性能就随着mask比例的增加呈线性增涨的趋势。
image
       微调时,结果对mask比例不太敏感,大范围的屏蔽比率(40- 80%)都可以很好地工作。最优mask比例是75%。如上图可视化结果。
image
       上图a显示解码器深度对微调和线性探测任务的影响。观察到足够深的解码器对线性探测很重要,因为自编码器的最后几层更专注于重建,与识别不太相关,预训练与线性检测之间存在gap。故合理深度的解码器(8层)可以使潜在表示的语义信息更抽象,可以改进8%的线性探测精度。对于微调,解码器深度对改进微调的影响较小,故只使用单层解码器的MAE也可以在微调中表现良好(84.8%),这么小的解码器可以进一步加快训练速度。

       图b实验解码器宽度,也得出与a类似的结论,通道数为512时微调和线性探测精度最优。故编码器默认是8个blocks,通道数是512。
image
       图c实验编码器是否接受mask tokens。实验表明,encoder如果接收mask tokens,性能会降低(线性检测降低14%),因此编码器只接收visible tokens,既能提升性能,又能降低计算量,且加速训练。decoder越小/encoder越大,加速越明显,MAE的时间和存储效率使其适合训练大型模型。详细实验配置、结果如上图。

       图d实验重建目标方式。实验表明使用normalization(per patch)的效果比不使用更好。对patch执行PCA,然后将前96个主成分作为重构目标,效果并不好。使用BEiT的dVAE作为目标,效果也不太好。

       图e实验数据增强方法。实验表明,MAE只使用裁剪增强时就可以表现很好,添加颜色抖动会降低结果。同时发现不使用数据增强,MAE甚至性能更好。对MAE来说,每一个轮次masks的token都不同,随机masking扮演了类似于数据增强的角色。
image
       图f实验不同的掩码采样策略。观察到block掩码策略倾向于删除较大的块(上图中),基于block掩码的MAE在50%的比例下工作得相当好,但在75%的比例下退化。该任务比random采样更难,具有更高的训练损失,重建结果也比较模糊。 其次grid采样(上图右)是一个更容易的任务,具有更低的训练损失。然而,其重建更加尖锐。表示质量较低。故简单random采样最适合MAE,其允许更高的掩蔽率,这提供了更大的加速效益,同时也具有良好的准确性。
image
       上图为训练epoch数量对模型精度的影响。观察到,随着训练时间的延长准确率稳步提高。在1600个epoch训练后,线性检测精度依然没有达到饱和。

对比实验

image
       上图为与先前自监督方法比较了自监督ViT模型的微调结果。对于ViT-B,所有方法的性能都很好,对于ViT-L,方法之间的差距更大。此外,观察到MAE可以轻松扩展,并从更大的模型中显示出稳定的改进。使用ViT-H获得了86.9% 的准确率,将ViT-H微调为448大小,只使用IN1K数据就实现了87.8%的准确率。

       与BEiT相比,MAE具有更高的准确性、更简单、更快的计算速度。MAE重建像素,与预测token的BEiT形成对比。
image
       上图为与有监督预训练ViT的比较。

部分微调实验

       微调ViT最后几层,同时冻结其他层进行训练实验。
image
       上图显示结果。只微调一个Transformer块就可以将精度从73.5%提高到81.0%,如果只微调最后一个块的一半(其MLP子块),可以得到79.1%的精度。微调一部分块(4或6)可以实现接近完全微调的精度。

       与MoCo v3进行比较。MoCo v3具有更高的线性探测精度,但其所有的部分微调结果都比MAE差。当调优4个区块时,差距为2.6%。虽然MAE表示的线性可分性较差,但它们是更强的非线性特征。

迁移学习实验

image
       上图在COCO上对Mask RCNN端到端进行微调,ViT骨干经过调整用于FPN。这种方法应用于上图中的所有条目,指标为目标检测的box AP和实例分割的mask AP。

       与有监督的预训练相比,MAE在所有配置下的表现都更好。在较小的ViT-B下,MAE比有监督预训练高2.4个点。对于更大的ViT-L,MAE预训练比有监督预训练高出4.0个点。 基于像素的MAE优于或与基于token的BEiT相当,而MAE更简单、更快,MAE和BEiT都优于MoCo v3, MoCo v3与有监督预训练相当。
image
       上图使用UperNet在ADE20K实例分割任务上进行实验。观察到,MAE预训练比有监督预训练的结果提高了3.7个点。基于像素的MAE也优于基于token的BEiT。
image
       上图为在iNaturalists和Places实验分类任务。在iNat上,MAE方法下随着ViT模型的扩大,精度有了很大的提高,大大超过了之前的最佳结果。在Places上,MAE的性能超过了之前的最佳结果,之前的这些结果通过对数十亿张图像进行预训练获得。
image
       上图实验比较像素和dVAE作为MAE重建目标的结果。虽然使用dVAE token比使用非归一化像素要好,但其在统计上与使用归一化像素相似。表明token化对MAE是不必要的。

鲁棒性评估

image
       上图评估了模型在不同变体的ImageNet验证集上的鲁棒性。使用在原始ImageNet上进行微调的相同模型(表3),并仅在不同的验证集上运行推理。

       观察到除IN-C外,MAE在增加模型大小后具有显著的收益。增大图像大小在所有集合中都有帮助,也大大超过了以前的最佳结果。 相比之下,有监督训练的表现要差得多。例如使用ViT-H,MAE预训练在IN-A上比有监督的对应模型好35%。

可视化

image
image
       上图显示了在imagenet和COCO上的随机样本重建可视化结果三元组,其中左为掩码图像、中为MAE重建、右为真实值。掩码率为75%。

reference

He, K. , Chen, X. , Xie, S. , Li, Y. , Dollár, Piotr, & Girshick, R. . (2021). Masked autoencoders are scalable vision learners.

这篇关于【论文精读】MAE的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/836353

相关文章

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需

2024 年高教社杯全国大学生数学建模竞赛 C 题 农作物的种植策略 参考论文 无水印

持续更新中,2024年数学建模比赛思路代码论文都会发布到专栏内,只需订阅一次!  完整论文+代码+数据结果链接在文末!  订阅后可查看参考论文文件 第一问 1.1 问题重述 这个问题围绕的是华北山区的某乡村,在有限的耕地条件下,如何制定最优的农作物种植策略。乡村有 34 块露天耕地和 20 个大棚,种植条件包括粮食作物、蔬菜、水稻和食用菌。除了要考虑地块的面积、种植季节等,还要确保

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes 优势 1、构建了一个用于监督原始视频去噪的基准数据集。为了多次捕捉瞬间,我们手动为对象s创建运动。在高ISO模式下捕获每一时刻的噪声帧,并通过对多个噪声帧进行平均得到相应的干净帧。 2、有效的原始视频去噪网络(RViDeNet),通过探

2024年全国大学生数学建模A题借鉴论文

问题  1: 舞龙队的动态位置与速度计算 1. **螺旋线的几何建模**:根据题目描述,舞龙队沿着等距螺旋线前进。螺旋线的螺距为 55 cm, 需根据极坐标公式确定每节板凳的位置。 -  极坐标螺旋线方程:\( r = a + b\theta \), 其中  \( b \)  是螺距, 可以利用该方程计算 每秒舞龙队的各个节数的坐标。 2. **速度计算**:给定龙头的行进速度为 1 m/s ,