【二进制求公约数】【数学】【数论】2543. 判断一个点是否可以到达

本文主要是介绍【二进制求公约数】【数学】【数论】2543. 判断一个点是否可以到达,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文涉及知识点

二进制求公约数

LeetCode2543. 判断一个点是否可以到达

给你一个无穷大的网格图。一开始你在 (1, 1) ,你需要通过有限步移动到达点 (targetX, targetY) 。
每一步 ,你可以从点 (x, y) 移动到以下点之一:
(x, y - x)
(x - y, y)
(2 * x, y)
(x, 2 * y)
给你两个整数 targetX 和 targetY ,分别表示你最后需要到达点的 X 和 Y 坐标。如果你可以从 (1, 1) 出发到达这个点,请你返回true ,否则返回 false 。
示例 1:
输入:targetX = 6, targetY = 9
输出:false
解释:没法从 (1,1) 出发到达 (6,9) ,所以返回 false 。
示例 2:
输入:targetX = 4, targetY = 7
输出:true
解释:你可以按照以下路径到达:(1,1) -> (1,2) -> (1,4) -> (1,8) -> (1,7) -> (2,7) -> (4,7) 。
提示:
1 <= targetX, targetY <= 109

预备知识

辗转相除法(欧几里得)求最大公约数

( a , b ) → 不失一般性,令 a > = b ( c = a m o d b , d = b ) → 不失一般性,令 c > = d ( e = c m o d d , f = d ) ⋯ (a,b)^{不失一般性,令a >= b}_\rightarrow (c= a \mod b,d= b) ^{不失一般性,令c >= d}_\rightarrow (e=c \mod d,f=d) \cdots (a,b)不失一般性,令a>=b(c=amodb,d=b)不失一般性,令c>=d(e=cmodd,f=d)
直到最后的两个数一个为0,则公约数是另外一个。比如:e为0,最大公约数就是f。f为0,最大公约数为e。
a,b不断变小,有限次数一定有一个数变为0。
令某两个数的最大公约数为q, 则这两个数可以表示为 q × a , q × b 则 q × ( a m o d b ) , q × b 的最大公约数为 q 则这两个数可以表示为q \times a,q \times b 则 q \times (a \mod b) , q \times b 的最大公约数为q 则这两个数可以表示为q×a,q×bq×(amodb),q×b的最大公约数为q
a%b 为0,也符合数学定义: 0和任何数x的最大公约数是x。

二进制求公约数

求a,b的最大公约数。
一,如果a,b都是偶数,则GCD(a,b) = 2*GCD(a,b)。
二,如果a 是偶数,b是奇数(反之类似)。GCD(a,b)=GCD(a/2,b)。b是奇数,所以他们的公约数不包括2。
三,两者都是奇数。
3.1,两者相等。a就是最大公约数。
3.2,a b不等,不失一般性,令a>b。GCD(a,b) == GCD(a+b,b) == GCD((a+b)/2,b)
由于a,b是不断变小,一定会相等。

数学

本题 ⟺ \iff (targetX, targetY)能否变成(1,1)。
如果 argetX, targetY 最大公约是g × \times × 2m ,按二进制求最大公约数的做法,最终变成(g,g)。如果g=1,则一定能到达。
下面来证明 g ≠ \neq = 1 ,则一定不能到达。
4种操作对公约数的影响只有两种:
一,最大公约数不变。
二,最大公约数除以2。
这4个操作若干次后,两个数的最大公约是:g × \times × 2m1 ,m1 ∈ \in [0,m]。
因为:g ≠ \neq = 1 ,故: g × \times × 2m1 ≠ \neq = 1 。

娱乐型求最大公约数

这种求公约数的方式不好理解,不要在工程中使用。

int GCD(int x, int y)
{if ((x && y)){while ((x %= y) && (y %= x));}return x + y;
}
class Solution {
public:bool isReachable(int targetX, int targetY) {const int g = GCD(targetX, targetY);return 0 == (g & (g - 1));}
};

二进制求公约数

int GCD(int x, int y)
{	int ret = 1;while (x != y){if (x < y){swap(x, y);}const bool odd1 = x & 1;const bool odd2 = y & 1;if (odd1 & odd2){x = (x + y) / 2;}else if (odd1){y /= 2;}else if (odd2){x /= 2;}else{ret *= 2;x /= 2;y /= 2;}}return x * ret;
}
class Solution {
public:bool isReachable(int targetX, int targetY) {const int g = GCD(targetX, targetY);return 0 == (g & (g - 1));}
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【二进制求公约数】【数学】【数论】2543. 判断一个点是否可以到达的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/836310

相关文章

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

数论ZOJ 2562

题意:给定一个数N,求小于等于N的所有数当中,约数最多的一个数,如果存在多个这样的数,输出其中最大的一个。 分析:反素数定义:对于任何正整数x,其约数的个数记做g(x).例如g(1)=1,g(6)=4.如果某个正整数x满足:对于任意i(0<i<x),都有g(i)<g(x),则称x为反素数。 性质一:一个反素数的质因子必然是从2开始连续的质数。 性质二:p=2^t1*3^t2*5^t3*7

zoj 1721 判断2条线段(完全)相交

给出起点,终点,与一些障碍线段。 求起点到终点的最短路。 枚举2点的距离,然后最短路。 2点可达条件:没有线段与这2点所构成的线段(完全)相交。 const double eps = 1e-8 ;double add(double x , double y){if(fabs(x+y) < eps*(fabs(x) + fabs(y))) return 0 ;return x + y ;

POJ1269 判断2条直线的位置关系

题目大意:给两个点能够确定一条直线,题目给出两条直线(由4个点确定),要求判断出这两条直线的关系:平行,同线,相交。如果相交还要求出交点坐标。 解题思路: 先判断两条直线p1p2, q1q2是否共线, 如果不是,再判断 直线 是否平行, 如果还不是, 则两直线相交。  判断共线:  p1p2q1 共线 且 p1p2q2 共线 ,共线用叉乘为 0  来判断,  判断 平行:  p1p