兼容 Presto、Trino、ClickHouse、Hive 近 10 种 SQL 方言,Doris SQL Convertor 解读及实操演示

本文主要是介绍兼容 Presto、Trino、ClickHouse、Hive 近 10 种 SQL 方言,Doris SQL Convertor 解读及实操演示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随着版本迭代,Apache Doris 一直在拓展应用场景边界,从典型的实时报表、交互式 Ad-hoc 分析等 OLAP 场景到湖仓一体、高并发数据服务、日志检索分析及批量数据处理,越来越多用户与企业开始将 Apache Doris 作为统一的数据分析产品,以解决多组件带来的数据冗余、架构复杂、分析时效性低、运维难度大等问题。

然而在架构统一和升级的过程中,由于部分大数据分析系统有自己的 SQL 方言、需要对 SQL 语法进行一定程度的修改,另外由于大量原有系统的 SQL 与业务逻辑相关联,需要进行大量业务逻辑的改造,这不可避免地增加了额外迁移成本。

为了帮助企业有效应对这些挑战,Apache Doris 2.1 版本提供了 SQL 方言兼容与转换方案—— Doris SQL Convertor,兼容了包括 Presto、Trino、Hive、ClickHouse、PostgreSQL 等在内多种 SQL 语法。 用户可以在 Doris 中直接使用相应系统的 SQL 语法执行查询,也可以在可视化界面对原有的 SQL 语句进行批量转换。通过 Doris SQL Convertor,能够有效减轻用户业务迁移成本,提供更加顺畅地业务迁移体验。

核心特性

01 无缝切换,高度兼容多种 SQL 方言

无需手动对原有系统的 SQL 方言进行改写,用户仅需要在 Apache Doris 会话变量中设置 set sql_dialect= XXX,即可直接在 Doris 中执行该 SQL 语法的查询。

我们在实际客户场景中进行了大量兼容性测试,以 ClickHouse 和 Presto 方言为例。在某些社区用户的实际线上业务 SQL 兼容性测试中,Doris SQL Convertor 在全部 3 万多条查询语句中,与 Presto SQL 兼容度高达 99.6% ,与 ClickHouse 方言兼容度高达 98%。
目前,Doris SQL Convertor 已支持了多种主流 SQL 方言,包括 Presto、Trino、Hive、ClickHouse、PostgreSQL 等。后续我们也将继续收集用户的反馈,在持续优化多种语法兼容性的同时,支持如 Teradata 、SQL Server、Snowflake 等更多方言,以满足用户更多样化的业务需求。

02 简单易用,支持一键批量生成

除了直接在命令行中执行查询 SQL 以外,我们还提供了可视化界面,支持文本输入和文件上传两种模式。对于单个 SQL,用户可以直接在 Web 界面中进行文本输入。如若存量 SQL 规模庞大,可以通过上传文件进行多个 SQL 的一键批量转换。

doris-convertor.gif

安装部署与使用介绍

01 服务部署与使用

1. 下载最新版本的 SQL 方言转换工具。

2.在任意 FE 节点,通过以下命令启动服务。

  • 该服务是一个无状态的服务,可随时启停;
  • 该命令中的 port=5001 是服务端口,可以指定为任意一个可用端口。
  • 建议在每个 FE 节点都单独启动一个服务。
nohup ./doris-sql-convertor-1.0.1-bin-x86 run --host=0.0.0.0 --port=5001 &

3.启动 Doris 集群,版本需为 Doris 2.1 或更高

4.在 Doris 中设置 SQL 方言转换服务的 URL。该命令中127.0.0.1:5001 是 SQL 方言转换服务的部署节点 IP 和端口。

MySQL> set global sql_converter_service_url = "http://127.0.0.1:5001/api/v1/convert"

在完成服务部署后,我们可以直接在命令行中执行 SQL,在此以 Presto 与 Clickhouse SQL 方言为例。在会话变量中设置set sql_dialect = ``XXX 即可开启服务,执行示例如下:

Presto

mysql> set sql_dialect=presto;                                                                                                                                                                                                             
Query OK, 0 rows affected (0.00 sec) mysql> SELECT cast(start_time as varchar(20)) as col1,                                                                                                                                                                                     array_distinct(arr_int) as col2,                                                                                                                                                                                             FILTER(arr_str, x -> x LIKE '%World%') as col3,                                                                                                                                                                              to_date(value,'%Y-%m-%d') as col4,                                                                                                                                                                                           YEAR(start_time) as col5,                                                                                                                                                                                                    date_add('month', 1, start_time) as col6,                                                                                                                                                                                    REGEXP_EXTRACT_ALL(value, '-.') as col7,                                                                                                                                                                                     JSON_EXTRACT('{"id": "33"}', '$.id')as col8,                                                                                                                                                                                 element_at(arr_int, 1) as col9,                                                                                                                                                                                              date_trunc('day',start_time) as col10                                                                                                                                                                                        FROM test_sqlconvert                                                                                                                                                                                                            where date_trunc('day',start_time)= DATE'2024-05-20'                                                                                                                                                                            order by id;                                                                                                                                                                                                                        
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                                                                                
| col1                | col2      | col3      | col4       | col5 | col6                | col7        | col8 | col9 | col10               |                                                                                                
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                                                                                
| 2024-05-20 13:14:52 | [1, 2, 3] | ["World"] | 2024-01-14 | 2024 | 2024-06-20 13:14:52 | ['-0','-1'] | "33" |    1 | 2024-05-20 00:00:00 |                                                                                                
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                                                                                
1 row in set (0.03 sec)    

ClickHouse

mysql> set sql_dialect=clickhouse;                                                                                                                                             
Query OK, 0 rows affected (0.00 sec)                                                                                                                                           mysql> select  toString(start_time) as col1,                                                                                                                                   arrayCompact(arr_int) as col2,                                                                                                                                  arrayFilter(x -> x like '%World%',arr_str)as col3,                                                                                                              toDate(value) as col4,                                                                                                                                          toYear(start_time)as col5,                                                                                                                                      addMonths(start_time, 1)as col6,                                                                                                                                extractAll(value, '-.')as col7,                                                                                                                                 JSONExtractString('{"id": "33"}' , 'id')as col8,                                                                                                                arrayElement(arr_int, 1) as col9,                                                                                                                               date_trunc('day',start_time) as col10                                                                                                                           FROM test_sqlconvert                                                                                                                                               where date_trunc('day',start_time)= '2024-05-20 00:00:00'                                                                                                          order by id;                                                                                                                                                   
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                    
| col1                | col2      | col3      | col4       | col5 | col6                | col7        | col8 | col9 | col10               |                                    
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                    
| 2024-05-20 13:14:52 | [1, 2, 3] | ["World"] | 2024-01-14 | 2024 | 2024-06-20 13:14:52 | ['-0','-1'] | "33" |    1 | 2024-05-20 00:00:00 |                                    
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                    
1 row in set (0.02 sec)

02 可视化界面部署与使用

针对大规模历史业务逻辑转换的需求,推荐使用可视化界面,通过文件批量上传完成方言转换。

可视化界面的部署过程如下:

  1. 环境要求: docker 、docker-compose

  2. 获取 Doris-SQL-Convertor Docker 镜像包(文末附获取 Docker 镜像包方式)

  3. 创建镜像网络

      docker network create app_network
    
  4. 解压安装包

       tar xzvf doris-sql-convertor-1.0.1.tar.gzcd doris-sql-convertor
    
  5. 编辑环境变量 vim .env

       FLASK_APP=server/app.pyFLASK_DEBUG=1API_HOST=http://doris-sql-convertor-api:5000# DOCKER TAGAPI_TAG=latestWEB_TAG=latest
    
  6. 启动

       sh start.sh
    

在部署完成后,可以在本地浏览器中通过 ip:8080 访问。当前默认端口为 8080,可以修改映射端口。在界面中,可直接选择来源方言,输入需要转换的 SQL 方言,并点击 Convert 实现转换。

提示:

  1. 进行批量转换时每条 SQL 需要以 ; 结束
  2. 最多支持 239 个 UNION ALL 转换

结束语

作为一款强大而易用的 SQL 方言转换工具,Doris SQL Convertor 致力于提供高效、稳定的 SQL 迁移解决方案,满足用户多样化的业务需求。无论是平滑无痕的方言转换,还是复杂的批量 SQL 处理任务,Doris SQL Convertor 都能够提供快速而稳定的转换体验,确保转化过程中的完整性与准确性。

未来,我们将不断扩展支持更多的 SQL 方言并持续提高 SQL 方言的兼容性,以满足不断变化的迁移需求。欢迎大家前往 Doris 问答论坛 反馈使用过程中的问题与建议。

这篇关于兼容 Presto、Trino、ClickHouse、Hive 近 10 种 SQL 方言,Doris SQL Convertor 解读及实操演示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/835589

相关文章

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

关于Maven生命周期相关命令演示

《关于Maven生命周期相关命令演示》Maven的生命周期分为Clean、Default和Site三个主要阶段,每个阶段包含多个关键步骤,如清理、编译、测试、打包等,通过执行相应的Maven命令,可以... 目录1. Maven 生命周期概述1.1 Clean Lifecycle1.2 Default Li

Mysql DATETIME 毫秒坑的解决

《MysqlDATETIME毫秒坑的解决》本文主要介绍了MysqlDATETIME毫秒坑的解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 今天写代码突发一个诡异的 bug,代码逻辑大概如下。1. 新增退款单记录boolean save = s

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

MYSQL行列转置方式

《MYSQL行列转置方式》本文介绍了如何使用MySQL和Navicat进行列转行操作,首先,创建了一个名为`grade`的表,并插入多条数据,然后,通过修改查询SQL语句,使用`CASE`和`IF`函... 目录mysql行列转置开始列转行之前的准备下面开始步入正题总结MYSQL行列转置环境准备:mysq