兼容 Presto、Trino、ClickHouse、Hive 近 10 种 SQL 方言,Doris SQL Convertor 解读及实操演示

本文主要是介绍兼容 Presto、Trino、ClickHouse、Hive 近 10 种 SQL 方言,Doris SQL Convertor 解读及实操演示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随着版本迭代,Apache Doris 一直在拓展应用场景边界,从典型的实时报表、交互式 Ad-hoc 分析等 OLAP 场景到湖仓一体、高并发数据服务、日志检索分析及批量数据处理,越来越多用户与企业开始将 Apache Doris 作为统一的数据分析产品,以解决多组件带来的数据冗余、架构复杂、分析时效性低、运维难度大等问题。

然而在架构统一和升级的过程中,由于部分大数据分析系统有自己的 SQL 方言、需要对 SQL 语法进行一定程度的修改,另外由于大量原有系统的 SQL 与业务逻辑相关联,需要进行大量业务逻辑的改造,这不可避免地增加了额外迁移成本。

为了帮助企业有效应对这些挑战,Apache Doris 2.1 版本提供了 SQL 方言兼容与转换方案—— Doris SQL Convertor,兼容了包括 Presto、Trino、Hive、ClickHouse、PostgreSQL 等在内多种 SQL 语法。 用户可以在 Doris 中直接使用相应系统的 SQL 语法执行查询,也可以在可视化界面对原有的 SQL 语句进行批量转换。通过 Doris SQL Convertor,能够有效减轻用户业务迁移成本,提供更加顺畅地业务迁移体验。

核心特性

01 无缝切换,高度兼容多种 SQL 方言

无需手动对原有系统的 SQL 方言进行改写,用户仅需要在 Apache Doris 会话变量中设置 set sql_dialect= XXX,即可直接在 Doris 中执行该 SQL 语法的查询。

我们在实际客户场景中进行了大量兼容性测试,以 ClickHouse 和 Presto 方言为例。在某些社区用户的实际线上业务 SQL 兼容性测试中,Doris SQL Convertor 在全部 3 万多条查询语句中,与 Presto SQL 兼容度高达 99.6% ,与 ClickHouse 方言兼容度高达 98%。
目前,Doris SQL Convertor 已支持了多种主流 SQL 方言,包括 Presto、Trino、Hive、ClickHouse、PostgreSQL 等。后续我们也将继续收集用户的反馈,在持续优化多种语法兼容性的同时,支持如 Teradata 、SQL Server、Snowflake 等更多方言,以满足用户更多样化的业务需求。

02 简单易用,支持一键批量生成

除了直接在命令行中执行查询 SQL 以外,我们还提供了可视化界面,支持文本输入和文件上传两种模式。对于单个 SQL,用户可以直接在 Web 界面中进行文本输入。如若存量 SQL 规模庞大,可以通过上传文件进行多个 SQL 的一键批量转换。

doris-convertor.gif

安装部署与使用介绍

01 服务部署与使用

1. 下载最新版本的 SQL 方言转换工具。

2.在任意 FE 节点,通过以下命令启动服务。

  • 该服务是一个无状态的服务,可随时启停;
  • 该命令中的 port=5001 是服务端口,可以指定为任意一个可用端口。
  • 建议在每个 FE 节点都单独启动一个服务。
nohup ./doris-sql-convertor-1.0.1-bin-x86 run --host=0.0.0.0 --port=5001 &

3.启动 Doris 集群,版本需为 Doris 2.1 或更高

4.在 Doris 中设置 SQL 方言转换服务的 URL。该命令中127.0.0.1:5001 是 SQL 方言转换服务的部署节点 IP 和端口。

MySQL> set global sql_converter_service_url = "http://127.0.0.1:5001/api/v1/convert"

在完成服务部署后,我们可以直接在命令行中执行 SQL,在此以 Presto 与 Clickhouse SQL 方言为例。在会话变量中设置set sql_dialect = ``XXX 即可开启服务,执行示例如下:

Presto

mysql> set sql_dialect=presto;                                                                                                                                                                                                             
Query OK, 0 rows affected (0.00 sec) mysql> SELECT cast(start_time as varchar(20)) as col1,                                                                                                                                                                                     array_distinct(arr_int) as col2,                                                                                                                                                                                             FILTER(arr_str, x -> x LIKE '%World%') as col3,                                                                                                                                                                              to_date(value,'%Y-%m-%d') as col4,                                                                                                                                                                                           YEAR(start_time) as col5,                                                                                                                                                                                                    date_add('month', 1, start_time) as col6,                                                                                                                                                                                    REGEXP_EXTRACT_ALL(value, '-.') as col7,                                                                                                                                                                                     JSON_EXTRACT('{"id": "33"}', '$.id')as col8,                                                                                                                                                                                 element_at(arr_int, 1) as col9,                                                                                                                                                                                              date_trunc('day',start_time) as col10                                                                                                                                                                                        FROM test_sqlconvert                                                                                                                                                                                                            where date_trunc('day',start_time)= DATE'2024-05-20'                                                                                                                                                                            order by id;                                                                                                                                                                                                                        
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                                                                                
| col1                | col2      | col3      | col4       | col5 | col6                | col7        | col8 | col9 | col10               |                                                                                                
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                                                                                
| 2024-05-20 13:14:52 | [1, 2, 3] | ["World"] | 2024-01-14 | 2024 | 2024-06-20 13:14:52 | ['-0','-1'] | "33" |    1 | 2024-05-20 00:00:00 |                                                                                                
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                                                                                
1 row in set (0.03 sec)    

ClickHouse

mysql> set sql_dialect=clickhouse;                                                                                                                                             
Query OK, 0 rows affected (0.00 sec)                                                                                                                                           mysql> select  toString(start_time) as col1,                                                                                                                                   arrayCompact(arr_int) as col2,                                                                                                                                  arrayFilter(x -> x like '%World%',arr_str)as col3,                                                                                                              toDate(value) as col4,                                                                                                                                          toYear(start_time)as col5,                                                                                                                                      addMonths(start_time, 1)as col6,                                                                                                                                extractAll(value, '-.')as col7,                                                                                                                                 JSONExtractString('{"id": "33"}' , 'id')as col8,                                                                                                                arrayElement(arr_int, 1) as col9,                                                                                                                               date_trunc('day',start_time) as col10                                                                                                                           FROM test_sqlconvert                                                                                                                                               where date_trunc('day',start_time)= '2024-05-20 00:00:00'                                                                                                          order by id;                                                                                                                                                   
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                    
| col1                | col2      | col3      | col4       | col5 | col6                | col7        | col8 | col9 | col10               |                                    
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                    
| 2024-05-20 13:14:52 | [1, 2, 3] | ["World"] | 2024-01-14 | 2024 | 2024-06-20 13:14:52 | ['-0','-1'] | "33" |    1 | 2024-05-20 00:00:00 |                                    
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                    
1 row in set (0.02 sec)

02 可视化界面部署与使用

针对大规模历史业务逻辑转换的需求,推荐使用可视化界面,通过文件批量上传完成方言转换。

可视化界面的部署过程如下:

  1. 环境要求: docker 、docker-compose

  2. 获取 Doris-SQL-Convertor Docker 镜像包(文末附获取 Docker 镜像包方式)

  3. 创建镜像网络

      docker network create app_network
    
  4. 解压安装包

       tar xzvf doris-sql-convertor-1.0.1.tar.gzcd doris-sql-convertor
    
  5. 编辑环境变量 vim .env

       FLASK_APP=server/app.pyFLASK_DEBUG=1API_HOST=http://doris-sql-convertor-api:5000# DOCKER TAGAPI_TAG=latestWEB_TAG=latest
    
  6. 启动

       sh start.sh
    

在部署完成后,可以在本地浏览器中通过 ip:8080 访问。当前默认端口为 8080,可以修改映射端口。在界面中,可直接选择来源方言,输入需要转换的 SQL 方言,并点击 Convert 实现转换。

提示:

  1. 进行批量转换时每条 SQL 需要以 ; 结束
  2. 最多支持 239 个 UNION ALL 转换

结束语

作为一款强大而易用的 SQL 方言转换工具,Doris SQL Convertor 致力于提供高效、稳定的 SQL 迁移解决方案,满足用户多样化的业务需求。无论是平滑无痕的方言转换,还是复杂的批量 SQL 处理任务,Doris SQL Convertor 都能够提供快速而稳定的转换体验,确保转化过程中的完整性与准确性。

未来,我们将不断扩展支持更多的 SQL 方言并持续提高 SQL 方言的兼容性,以满足不断变化的迁移需求。欢迎大家前往 Doris 问答论坛 反馈使用过程中的问题与建议。

这篇关于兼容 Presto、Trino、ClickHouse、Hive 近 10 种 SQL 方言,Doris SQL Convertor 解读及实操演示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/835589

相关文章

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

mysql中的group by高级用法

《mysql中的groupby高级用法》MySQL中的GROUPBY是数据聚合分析的核心功能,主要用于将结果集按指定列分组,并结合聚合函数进行统计计算,下面给大家介绍mysql中的groupby用法... 目录一、基本语法与核心功能二、基础用法示例1. 单列分组统计2. 多列组合分组3. 与WHERE结合使

Mysql用户授权(GRANT)语法及示例解读

《Mysql用户授权(GRANT)语法及示例解读》:本文主要介绍Mysql用户授权(GRANT)语法及示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql用户授权(GRANT)语法授予用户权限语法GRANT语句中的<权限类型>的使用WITH GRANT

Mysql如何解决死锁问题

《Mysql如何解决死锁问题》:本文主要介绍Mysql如何解决死锁问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录【一】mysql中锁分类和加锁情况【1】按锁的粒度分类全局锁表级锁行级锁【2】按锁的模式分类【二】加锁方式的影响因素【三】Mysql的死锁情况【1

SQL BETWEEN 的常见用法小结

《SQLBETWEEN的常见用法小结》BETWEEN操作符是SQL中非常有用的工具,它允许你快速选取某个范围内的值,本文给大家介绍SQLBETWEEN的常见用法,感兴趣的朋友一起看看吧... 在SQL中,BETWEEN是一个操作符,用于选取介于两个值之间的数据。它包含这两个边界值。BETWEEN操作符常用

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

MySql match against工具详细用法

《MySqlmatchagainst工具详细用法》在MySQL中,MATCH……AGAINST是全文索引(Full-Textindex)的查询语法,它允许你对文本进行高效的全文搜素,支持自然语言搜... 目录一、全文索引的基本概念二、创建全文索引三、自然语言搜索四、布尔搜索五、相关性排序六、全文索引的限制七