兼容 Presto、Trino、ClickHouse、Hive 近 10 种 SQL 方言,Doris SQL Convertor 解读及实操演示

本文主要是介绍兼容 Presto、Trino、ClickHouse、Hive 近 10 种 SQL 方言,Doris SQL Convertor 解读及实操演示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随着版本迭代,Apache Doris 一直在拓展应用场景边界,从典型的实时报表、交互式 Ad-hoc 分析等 OLAP 场景到湖仓一体、高并发数据服务、日志检索分析及批量数据处理,越来越多用户与企业开始将 Apache Doris 作为统一的数据分析产品,以解决多组件带来的数据冗余、架构复杂、分析时效性低、运维难度大等问题。

然而在架构统一和升级的过程中,由于部分大数据分析系统有自己的 SQL 方言、需要对 SQL 语法进行一定程度的修改,另外由于大量原有系统的 SQL 与业务逻辑相关联,需要进行大量业务逻辑的改造,这不可避免地增加了额外迁移成本。

为了帮助企业有效应对这些挑战,Apache Doris 2.1 版本提供了 SQL 方言兼容与转换方案—— Doris SQL Convertor,兼容了包括 Presto、Trino、Hive、ClickHouse、PostgreSQL 等在内多种 SQL 语法。 用户可以在 Doris 中直接使用相应系统的 SQL 语法执行查询,也可以在可视化界面对原有的 SQL 语句进行批量转换。通过 Doris SQL Convertor,能够有效减轻用户业务迁移成本,提供更加顺畅地业务迁移体验。

核心特性

01 无缝切换,高度兼容多种 SQL 方言

无需手动对原有系统的 SQL 方言进行改写,用户仅需要在 Apache Doris 会话变量中设置 set sql_dialect= XXX,即可直接在 Doris 中执行该 SQL 语法的查询。

我们在实际客户场景中进行了大量兼容性测试,以 ClickHouse 和 Presto 方言为例。在某些社区用户的实际线上业务 SQL 兼容性测试中,Doris SQL Convertor 在全部 3 万多条查询语句中,与 Presto SQL 兼容度高达 99.6% ,与 ClickHouse 方言兼容度高达 98%。
目前,Doris SQL Convertor 已支持了多种主流 SQL 方言,包括 Presto、Trino、Hive、ClickHouse、PostgreSQL 等。后续我们也将继续收集用户的反馈,在持续优化多种语法兼容性的同时,支持如 Teradata 、SQL Server、Snowflake 等更多方言,以满足用户更多样化的业务需求。

02 简单易用,支持一键批量生成

除了直接在命令行中执行查询 SQL 以外,我们还提供了可视化界面,支持文本输入和文件上传两种模式。对于单个 SQL,用户可以直接在 Web 界面中进行文本输入。如若存量 SQL 规模庞大,可以通过上传文件进行多个 SQL 的一键批量转换。

doris-convertor.gif

安装部署与使用介绍

01 服务部署与使用

1. 下载最新版本的 SQL 方言转换工具。

2.在任意 FE 节点,通过以下命令启动服务。

  • 该服务是一个无状态的服务,可随时启停;
  • 该命令中的 port=5001 是服务端口,可以指定为任意一个可用端口。
  • 建议在每个 FE 节点都单独启动一个服务。
nohup ./doris-sql-convertor-1.0.1-bin-x86 run --host=0.0.0.0 --port=5001 &

3.启动 Doris 集群,版本需为 Doris 2.1 或更高

4.在 Doris 中设置 SQL 方言转换服务的 URL。该命令中127.0.0.1:5001 是 SQL 方言转换服务的部署节点 IP 和端口。

MySQL> set global sql_converter_service_url = "http://127.0.0.1:5001/api/v1/convert"

在完成服务部署后,我们可以直接在命令行中执行 SQL,在此以 Presto 与 Clickhouse SQL 方言为例。在会话变量中设置set sql_dialect = ``XXX 即可开启服务,执行示例如下:

Presto

mysql> set sql_dialect=presto;                                                                                                                                                                                                             
Query OK, 0 rows affected (0.00 sec) mysql> SELECT cast(start_time as varchar(20)) as col1,                                                                                                                                                                                     array_distinct(arr_int) as col2,                                                                                                                                                                                             FILTER(arr_str, x -> x LIKE '%World%') as col3,                                                                                                                                                                              to_date(value,'%Y-%m-%d') as col4,                                                                                                                                                                                           YEAR(start_time) as col5,                                                                                                                                                                                                    date_add('month', 1, start_time) as col6,                                                                                                                                                                                    REGEXP_EXTRACT_ALL(value, '-.') as col7,                                                                                                                                                                                     JSON_EXTRACT('{"id": "33"}', '$.id')as col8,                                                                                                                                                                                 element_at(arr_int, 1) as col9,                                                                                                                                                                                              date_trunc('day',start_time) as col10                                                                                                                                                                                        FROM test_sqlconvert                                                                                                                                                                                                            where date_trunc('day',start_time)= DATE'2024-05-20'                                                                                                                                                                            order by id;                                                                                                                                                                                                                        
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                                                                                
| col1                | col2      | col3      | col4       | col5 | col6                | col7        | col8 | col9 | col10               |                                                                                                
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                                                                                
| 2024-05-20 13:14:52 | [1, 2, 3] | ["World"] | 2024-01-14 | 2024 | 2024-06-20 13:14:52 | ['-0','-1'] | "33" |    1 | 2024-05-20 00:00:00 |                                                                                                
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                                                                                
1 row in set (0.03 sec)    

ClickHouse

mysql> set sql_dialect=clickhouse;                                                                                                                                             
Query OK, 0 rows affected (0.00 sec)                                                                                                                                           mysql> select  toString(start_time) as col1,                                                                                                                                   arrayCompact(arr_int) as col2,                                                                                                                                  arrayFilter(x -> x like '%World%',arr_str)as col3,                                                                                                              toDate(value) as col4,                                                                                                                                          toYear(start_time)as col5,                                                                                                                                      addMonths(start_time, 1)as col6,                                                                                                                                extractAll(value, '-.')as col7,                                                                                                                                 JSONExtractString('{"id": "33"}' , 'id')as col8,                                                                                                                arrayElement(arr_int, 1) as col9,                                                                                                                               date_trunc('day',start_time) as col10                                                                                                                           FROM test_sqlconvert                                                                                                                                               where date_trunc('day',start_time)= '2024-05-20 00:00:00'                                                                                                          order by id;                                                                                                                                                   
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                    
| col1                | col2      | col3      | col4       | col5 | col6                | col7        | col8 | col9 | col10               |                                    
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                    
| 2024-05-20 13:14:52 | [1, 2, 3] | ["World"] | 2024-01-14 | 2024 | 2024-06-20 13:14:52 | ['-0','-1'] | "33" |    1 | 2024-05-20 00:00:00 |                                    
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                    
1 row in set (0.02 sec)

02 可视化界面部署与使用

针对大规模历史业务逻辑转换的需求,推荐使用可视化界面,通过文件批量上传完成方言转换。

可视化界面的部署过程如下:

  1. 环境要求: docker 、docker-compose

  2. 获取 Doris-SQL-Convertor Docker 镜像包(文末附获取 Docker 镜像包方式)

  3. 创建镜像网络

      docker network create app_network
    
  4. 解压安装包

       tar xzvf doris-sql-convertor-1.0.1.tar.gzcd doris-sql-convertor
    
  5. 编辑环境变量 vim .env

       FLASK_APP=server/app.pyFLASK_DEBUG=1API_HOST=http://doris-sql-convertor-api:5000# DOCKER TAGAPI_TAG=latestWEB_TAG=latest
    
  6. 启动

       sh start.sh
    

在部署完成后,可以在本地浏览器中通过 ip:8080 访问。当前默认端口为 8080,可以修改映射端口。在界面中,可直接选择来源方言,输入需要转换的 SQL 方言,并点击 Convert 实现转换。

提示:

  1. 进行批量转换时每条 SQL 需要以 ; 结束
  2. 最多支持 239 个 UNION ALL 转换

结束语

作为一款强大而易用的 SQL 方言转换工具,Doris SQL Convertor 致力于提供高效、稳定的 SQL 迁移解决方案,满足用户多样化的业务需求。无论是平滑无痕的方言转换,还是复杂的批量 SQL 处理任务,Doris SQL Convertor 都能够提供快速而稳定的转换体验,确保转化过程中的完整性与准确性。

未来,我们将不断扩展支持更多的 SQL 方言并持续提高 SQL 方言的兼容性,以满足不断变化的迁移需求。欢迎大家前往 Doris 问答论坛 反馈使用过程中的问题与建议。

这篇关于兼容 Presto、Trino、ClickHouse、Hive 近 10 种 SQL 方言,Doris SQL Convertor 解读及实操演示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/835589

相关文章

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

MySQL数据库中ENUM的用法是什么详解

《MySQL数据库中ENUM的用法是什么详解》ENUM是一个字符串对象,用于指定一组预定义的值,并可在创建表时使用,下面:本文主要介绍MySQL数据库中ENUM的用法是什么的相关资料,文中通过代码... 目录mysql 中 ENUM 的用法一、ENUM 的定义与语法二、ENUM 的特点三、ENUM 的用法1

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

mysql中的服务器架构详解

《mysql中的服务器架构详解》:本文主要介绍mysql中的服务器架构,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、mysql服务器架构解释3、总结1、背景简单理解一下mysqphpl的服务器架构。2、mysjsql服务器架构解释mysql的架

MySQL之InnoDB存储引擎中的索引用法及说明

《MySQL之InnoDB存储引擎中的索引用法及说明》:本文主要介绍MySQL之InnoDB存储引擎中的索引用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录1、背景2、准备3、正篇【1】存储用户记录的数据页【2】存储目录项记录的数据页【3】聚簇索引【4】二

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

MySQL中的InnoDB单表访问过程

《MySQL中的InnoDB单表访问过程》:本文主要介绍MySQL中的InnoDB单表访问过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、访问类型【1】const【2】ref【3】ref_or_null【4】range【5】index【6】

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

MySQL之InnoDB存储页的独立表空间解读

《MySQL之InnoDB存储页的独立表空间解读》:本文主要介绍MySQL之InnoDB存储页的独立表空间,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、独立表空间【1】表空间大小【2】区【3】组【4】段【5】区的类型【6】XDES Entry区结构【