『大模型笔记』AGI的定义之争:人工智能的终极目标还有多远?

2024-03-22 11:28

本文主要是介绍『大模型笔记』AGI的定义之争:人工智能的终极目标还有多远?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AGI的定义之争:人工智能的终极目标还有多远?

文章目录

  • 一. 关于通用人工智能本质的争论
  • 二. 参考文献

一. 关于通用人工智能本质的争论

  • “通用人工智能”(AGI) 一词在当前的AI话题讨论中已经变得极为普遍。OpenAI宣布其宗旨为 “确保通用人工智能能够惠及所有人类。” DeepMind的公司愿景声明强调,“通用人工智能…可能会引领历史上最伟大的变革之一。” AGI这一概念在英国政府的国家AI战略及美国政府的AI文档中频繁出现。微软的研究员们最近宣称,在大型语言模型GPT-4中,他们发现了通用人工智能的初现迹象,而现任及前任的谷歌高层也宣布,“通用人工智能已经成为现实。”埃隆·马斯克因为质疑GPT-4是否能被归类为一种“通用人工智能算法”,而将OpenAI告上法庭,这成为了一桩引人注目的诉讼案件。
  • 早期AGI的倡导者曾认为,机器不久将全面接管人类的各种活动。然而,研究人员通过一些失败教训发现,开发能在国际象棋上战胜你或解答你的搜索问题的AI系统,远比造出一个能折叠衣物或修理水管的机器人来得简单。因此,AGI的定义随之调整,仅限于所谓的“认知任务”。DeepMind的联合创始人Demis Hassabis认为,AGI应该是一个“能够完成几乎所有人类能够进行的认知任务的系统”而OpenAI则将其描述为“在大多数经济价值较高的工作中胜过人类的高度自主系统”,这里的“大多数”排除了那些需要物理智能的任务,这种智能可能还需要一段时间才能在机器人身上实现。
  • AI的“智能”概念——无论是认知上的还是其他方面的——常常被框定为个体智能体优化奖励或目标的过程。有影响力的论文之一将通用智能定义为“智能体在广泛环境下实现目标的能力”;另一篇论文则指出,“智能及其相关能力,可以被理解为服务于奖励最大化的过程。”确实,这就是当代AI的工作原理——比如,计算机程序AlphaGo被训练来优化特定的奖励函数(“赢得比赛”),而GPT-4则被训练来优化另一种奖励函数(“预测句子中的下一个词”)。
  • 这种关于智能的观点导致了一些AI研究人员的另一种推测:一旦AI系统实现了AGI,它将通过对其自身软件的优化,递归式地提高自己的智能,很快就能获得超人类智能,按照一种极端的预测,“其智能将比我们高出数千甚至数百万倍”。
  • 这种对优化的关注使得AI社区中的一些人开始担忧,那些可能会以疯狂的方式背离其创造者目标的“未对齐”AGI对人类的存在构成的风险。在他2014年的书《超级智能》中,哲学家Nick Bostrom提出了一个著名的思想实验:他设想人类给予一个超级智能AI系统一个目标——优化回形针的生产。AI系统将这一目标字面化到极致,使用其非凡的才智控制地球上的所有资源,并将一切转化为回形针。显然,人类并不希望为了生产更多的回形针而导致地球和人类的毁灭,但他们忘记在指令中明确这一点。AI研究员Yoshua Bengio提出了他自己的思想实验:“我们可能请求AI解决气候变化问题,它可能会设计出一种病毒来大幅减少人类人口,因为我们的指示对于‘伤害’的定义不够清晰,而且实际上人类是解决气候危机的主要障碍。”
  • 这些对AGI(和“超级智能”)的推测性看法,与那些研究生物智能,尤其是人类认知的人所持的观点不同。尽管认知科学没有对“通用智能”给出严格定义,也没有就人类或任何类型的系统能在多大程度上具备这种智能达成共识,但大多数认知科学家都会同意,智能不是可以在单一尺度上测量并随意调整的量,而是一种复杂的、在特定进化利基中大体上是适应性的,由普遍能力和专门能力综合而成的特质。
  • 许多研究生物智能的学者对于是否能将所谓的“认知”智能方面从其它模式中分离并实现在无形体的机器中进行模拟持有怀疑态度。心理学家们已经证明,人类智能的重要组成部分根植于个体的身体和情感的亲身体验中。同时,证据表明个体的智能深刻依赖于其参与社会和文化环境的程度。与其他人理解、协调并从中学习的能力,对于个人达成目标的成功来说,往往比个人的“优化能力”更为重要。此外,不同于理论上以最大化纸夹产出为目标的AI,人类智能的核心并非围绕着固定目标的优化,而是通过内在需求与其智能得到社会及文化环境支持的复杂整合来形成个人目标。与那些旨在超级智能地最大化纸夹产出的假想AI不同,智能的增强恰恰使我们能够更准确地理解他人的意图以及我们自己行为可能产生的影响,并据此调整我们的行为。正如哲学家Katja Grace所述,“将征服宇宙视为达成几乎任何人类目标的一个步骤,几乎对任何人来说都是完全荒谬的。那么,我们为什么会认为AI的目标会有所不同呢?”
  • 机器通过提升自身软件来实现智能的量级增长,这一设想同生物学上对智能的理解大相径庭,后者认为智能是一个超越了孤立大脑的高度复杂系统。如果达到人类水平的智能需要不同认知能力的复杂整合,以及社会和文化的支撑,那么系统的“智能”层面很可能无法无缝访问到“软件”层面,正如我们人类无法轻易通过工程化手段改造大脑(或基因)来提升自己的智力一样。然而,作为一个整体,我们通过外部技术工具,比如计算机,以及建立文化机构,比如学校、图书馆和互联网,提高了我们的实际智能水平。
  • AGI的含义以及它是否构成一个连贯的概念仍然是一个讨论话题。此外,对AGI机器能够做什么的猜测,大多基于直觉而非科学证据。但这些直觉有多可靠呢?AI的历史一再证明我们对于智能的直觉是错误的。许多早期的AI先锋认为,通过逻辑编程的机器能够捕获人类智能的全谱。其他学者预测,让机器在下棋中击败人类、在语言之间翻译或进行对话,需要它具备一般人类水平的智能——这些预测都被证明是错误的。在AI发展的每一个阶段,人类水平的智能都比研究者预期的要复杂得多。当前对于机器智能的推测会不会同样错误呢?我们能否发展出一个更加严谨和通用的智能科学来回答这些问题?
  • 目前还不清楚,AI科学会更类似于人类智能的科学,还是更像是天体生物学——后者对其他星球上可能存在的生命形式进行预测。对于那些从未见过、可能甚至不存在的事物(无论是外星生命还是超智能机器)进行预测,将需要基于一般原则的理论。最终,“AGI”的意义和后果不会由媒体辩论、诉讼或我们的直觉和猜测来确定,而是通过长期的科学研究来探索这些原则。

二. 参考文献

  • https://www.science.org/doi/10.1126/science.ado7069?continueFlag=882766b3b828657a17cf1da2cf50cf2e

这篇关于『大模型笔记』AGI的定义之争:人工智能的终极目标还有多远?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/835207

相关文章

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学