c++曲线拟合:贝塞尔曲线的控制点计算

2024-03-22 10:50

本文主要是介绍c++曲线拟合:贝塞尔曲线的控制点计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

废话不说,直接上代码(后面示例点对应的绘制效果):

不计算控制点的原始折线:

优化了代码的实现,使用STL代码更简洁

/*** @brief CalculateControlPoint 计算三次贝塞尔的控制点。* 三次方贝塞尔曲线由四个点定义: 起点、终点 和两个控制点。* @param rawPointVector [in]原始点数组* @param firstControlPointVector  [out]第一个控制点,总是比原始点数目少1,和第二个控制点数目相同* @param secondControlPointVector [out]第二个控制点,总是比原始点数目少1,和第一个控制点个数相同* @return 执行成功返回true,否则返回false。原始点数目必须不少于2,否则失败* @note 贝塞尔曲线得到之后,使用如下:*          原始点[0],*              第一个控制点[0],第二个控制点[0],原始点[1],*              第一个控制点[1],第二个控制点[1],原始点[2],*              第一个控制点[2],第二个控制点[2],原始点[3],*                  .*                  .*                  .*              第一个控制点[n-1],第二个控制点[n-1],原始点[n],*/
bool CalculateControlPoint(const std::vector<Point2D>& rawPointVector,std::vector<Point2D>& firstControlPointVector,std::vector<Point2D>& secondControlPointVector )
{if ( rawPointVector.size( ) < 2 ){printf("输入点至少是2个\n");return false;}std::size_t nPointSize = rawPointVector.size( ) - 1;const Point2D* pRawPoint = rawPointVector.data();if ( 1 == nPointSize ){// 特殊情况: 贝塞尔曲线是直线.// 3P1 = 2P0 + P3firstControlPointVector.resize(1);firstControlPointVector[0].X =(2 * pRawPoint[0].X + pRawPoint[1].X) / 3;firstControlPointVector[0].Y = (2 * pRawPoint[0].Y + pRawPoint[1].Y) / 3;// P2 = 2P1 – P0secondControlPointVector.resize(1);secondControlPointVector[0].X = 2 * firstControlPointVector[0].X - pRawPoint[0].X;secondControlPointVector[0].Y =	2 * firstControlPointVector[0].Y - pRawPoint[0].Y;return true;}std::vector<double> rhs(nPointSize);double* pTmp = rhs.data();for (std::size_t i = 1; i < nPointSize - 1; ++i){pTmp[i] = 4 * pRawPoint[i].X + 2 * pRawPoint[i + 1].X;}pTmp[0] = pRawPoint[0].X + 2 * pRawPoint[1].X;pTmp[nPointSize - 1] = (8 * pRawPoint[nPointSize - 1].X + pRawPoint[nPointSize].X) / 2.0;std::vector<double> x;GetFirstControlPoints(rhs,x);for (std::size_t i = 1; i < nPointSize - 1; ++i)pTmp[i] = 4 * pRawPoint[i].Y + 2 * pRawPoint[i + 1].Y;pTmp[0] = pRawPoint[0].Y + 2 * pRawPoint[1].Y;pTmp[nPointSize - 1] = (8 * pRawPoint[nPointSize - 1].Y + pRawPoint[nPointSize].Y) / 2.0;std::vector<double> y;GetFirstControlPoints(rhs,y);double* pX = x.data();double* pY = y.data();firstControlPointVector.resize( nPointSize );secondControlPointVector.resize( nPointSize );Point2D* pFirstPoints = firstControlPointVector.data();Point2D* pSecondPoints = secondControlPointVector.data();for (std::size_t i = 0; i < nPointSize; ++i){// Second control pointpFirstPoints[i].X = x[i];pFirstPoints[i].Y = y[i];if (i < nPointSize - 1){pSecondPoints[i].X = 2 * pRawPoint[i + 1].X - pX[i + 1];pSecondPoints[i].Y = 2 * pRawPoint[i + 1].Y - pY[i + 1];}else{pSecondPoints[i].X = (pRawPoint[nPointSize].X + pX[nPointSize - 1]) / 2;pSecondPoints[i].Y = (pRawPoint[nPointSize].Y + pY[nPointSize - 1]) / 2;}}return true;
}

用到的其它函数:


#include <math.h>
#include <vector>
typedef struct tagPoint2D
{inline tagPoint2D( double x=0.0, double y=0.0):X(x),Y(y){}double X;double Y;
}Point2D;static std::vector<double> GetFirstControlPoints(const std::vector<double>& rhs, std::vector<double>& x )
{std::size_t n = rhs.size( );x.resize( n );std::vector<double> tmp( n );double b = 2.0;x[0] = rhs[0] / b;for (std::size_t i = 1; i < n; ++i ) // Decomposition and forward substitution.{tmp[i] = 1 / b;b = (i < n - 1 ? 4.0 : 3.5) - tmp[i];x[i] = (rhs[i] - x[i - 1]) / b;}for (std::size_t i = 1; i < n; ++i )x[n - i - 1] -= tmp[n - i] * x[n - i]; // Backsubstitution.return x;
}

使用样例:

    std::vector<BezierSplie::Point2D> rawPointVector;rawPointVector.push_back( BezierSplie::Point2D(2.0f,20.0f) );rawPointVector.push_back( BezierSplie::Point2D(2.5f,19.0f) );rawPointVector.push_back( BezierSplie::Point2D(3.0f,16.0f) );rawPointVector.push_back( BezierSplie::Point2D(4.0f,10.5f) );rawPointVector.push_back( BezierSplie::Point2D(5.0f,13.5f) );rawPointVector.push_back( BezierSplie::Point2D(6.0f,16.0f) );rawPointVector.push_back( BezierSplie::Point2D(7.0f,20.0f) );rawPointVector.push_back( BezierSplie::Point2D(8.0f,25.0f) );std::vector<BezierSplie::Point2D> firstPointVector;std::vector<BezierSplie::Point2D> secondPointVector;BezierSplie::CalculateControlPoint( rawPointVector,firstPointVector,secondPointVector );printf("\nfirst control point:\n");for( auto it = firstPointVector.begin(); it != firstPointVector.end(); ++it ){printf("(%f,%f);", it ->X, it ->Y );}printf( "\nsecond second point: \n");for( auto it = secondPointVector.begin(); it != secondPointVector.end(); ++it ){printf("(%f,%f);", it ->X, it ->Y );}

计算原理:

先来看2个点的贝塞尔:

B(t)=(1−t)3P0+3(1−t)2tPc0+3(1−t)t2Pc1+t3P1 (1)

B(t)=−3(1−t)2P0+3(3t2−4t+1)Pc0+3(2t−3t2)Pc1+3t2P1 (2)

B′′(t)=6(1−t)P0+3(6t−4)P1+3(2−6t)P2+6tP3 (3)

 

2个控制点为直线,那么(1)式中的2次和3次项为0

得到:

3Pc1 = 2P0+P1 (*1)

Pc2  = 2Pc1–P0 (*2)

拓展到i阶的贝塞尔

Bi(t)=(1−t)3Pi−1+3(1−t)2tPci+3(1−t)t2Pci+1+t3Pi  (i=1,..,n) (4)

对应的1阶导:

Bi(t)=−3(1−t)2Pi−1+3(3t2−4t+1)Pci+3(2t−3t2)Pci+1+3t2Pi (i=1,..,n)(5)

一阶倒数连续的条件:Bi−1(1)=Bi(0)得到:

Pci+Pc(i−1)+1=2Pi−1;…(i=2,..,n)  (6

对应的2阶导:

B′′i(t)=6(1−t)Pi−1+6(3t−2)Pci+6(1−3t)Pci+1+6tPi (i=1,..,n)7)

同样二阶导 B’’i-1(1)=B’’i(0) ,得到:

Pc(i−1)+Pci+1=Pci+1+2Pc(i−1)+1 (i=2,..,n) (8)

对贝塞尔所有点,总是有B’’1(0)=0和B’’i(n)=0(因为起始和终止点)

2Pc1−Pc1+1=P0 (9)

2Pcn+1−Pcn=Pn (10)

整合(6)(8)(9)(10),对于第n个点控制点Pcn和Pcn+1,有:

2Pc1+Pc1+1=P0+2P1Pc1+4Pc1+1+Pc3=4P1+2P2 (11)

Pc(i−1)+4Pci+Pc(i+1)=4Pi−1+2Pi (12)

Pc(n−2)+4Pc(n−1)+Pcn=4Pn−2+2Pn−12Pc(n−1)+7Pcn=8Pn−1+Pn (13)

 

(12)是一般表达,如果知道第一个控制点,按照上面公式(6)(8)(9)(10)可以得到第二个控制点。

 

 

csdn不支持格式,WORD截图:

 

 

 

 

这篇关于c++曲线拟合:贝塞尔曲线的控制点计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/835151

相关文章

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

XTU 1237 计算几何

题面: Magic Triangle Problem Description: Huangriq is a respectful acmer in ACM team of XTU because he brought the best place in regional contest in history of XTU. Huangriq works in a big compa