人工智能基础部分13-LSTM网络:预测上证指数走势

2024-03-22 09:59

本文主要是介绍人工智能基础部分13-LSTM网络:预测上证指数走势,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,我是微学AI,今天给大家介绍一下LSTM网络,主要运用于解决序列问题。

一、LSTM网络简单介绍

LSTM又称为:长短期记忆网络,它是一种特殊的 RNN。LSTM网络主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。对于相比普通的RNN,LSTM能够在更长的序列中有更好的表现。

引入LSTM网络的原因:由于 RNN 网络主要问题是长期依赖,即隐藏状态在时间上传递过程中可能会丢失之前的信息。为了解决这个问题,引入了长短时记忆网络 (LSTM) 和门控循环单元 (GRU)。这两种网络结构在隐藏层中增加了门控机制,能够更好地控制信息的传递。

 其中符号及表示意思如下:

 LSTM中有三个门:
(1)遗忘门f:决定上一个时刻的记忆单元状态需要遗忘多少信息,保留多少信息到当前记忆单元状态。
(2)输入门i:控制当前时刻输入信息候选状态有多少信息需要保存到当前记忆单元状态。
(3)输出门o:控制当前时刻的记忆单元状态有多少信息需要输出给外部状态。

形象的例子让我们更好的理解LSTM的原理:

假设你是一个梦想远大的学生,你想通过学习一门课程获得更多的知识。在学习过程中,LSTM模型帮助你,它就像是一个老师,它的遗忘门就像是老师的提醒,它让你挑出不用的知识,以保持你对重要知识的清晰记忆。它的输入门就像是老师的指导,它会重新审视你学习过的知识,按照自己的逻辑把知识结合起来,进化出更多有用的知识。最后,它的输出门就像老师的监督,它会确保你学习到了有用的知识,不要浪费时间去学习无用的知识。

二、LSTM网络运用-预测上证指数走势

# 使用LSTM预测沪市指数
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import Dropout
from pandas import DataFrame
from pandas import concat
from itertools import chain
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']# 转化为可以用于监督学习的数据
def get_train_set(data_set, timesteps_in, timesteps_out=1):train_data_set = np.array(data_set)reframed_train_data_set = np.array(series_to_supervised(train_data_set, timesteps_in, timesteps_out).values)train_x, train_y = reframed_train_data_set[:, :-timesteps_out], reframed_train_data_set[:, -timesteps_out:]# 将数据集重构为符合LSTM要求的数据格式,即 [样本数,时间步,特征]train_x = train_x.reshape((train_x.shape[0], timesteps_in, 1))return train_x, train_y"""
将时间序列数据转换为适用于监督学习的数据
给定输入、输出序列的长度
data: 观察序列
n_in: 观测数据input(X)的步长,范围[1, len(data)], 默认为1
n_out: 观测数据output(y)的步长, 范围为[0, len(data)-1], 默认为1
dropnan: 是否删除NaN行
返回值:适用于监督学习的 DataFrame
"""
def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):print(data.shape)n_vars = 1 if type(data) is list else data.shape[1]df = DataFrame(data)cols, names = list(), list()# input sequence (t-n, ... t-1)for i in range(n_in, 0, -1):cols.append(df.shift(i))names += [('var%d(t-%d)' % (j + 1, i)) for j in range(n_vars)]# 预测序列 (t, t+1, ... t+n)for i in range(0, n_out):cols.append(df.shift(-i))if i == 0:names += [('var%d(t)' % (j + 1)) for j in range(n_vars)]else:names += [('var%d(t+%d)' % (j + 1, i)) for j in range(n_vars)]# 拼接到一起agg = concat(cols, axis=1)agg.columns = names# 去掉NaN行if dropnan:agg.dropna(inplace=True)return agg# 使用LSTM进行预测
def lstm_model(source_data_set, train_x, label_y, input_epochs, input_batch_size, timesteps_out):model = Sequential()# 第一层, 隐藏层神经元节点个数为128, 返回整个序列model.add(LSTM(128, return_sequences=True, activation='tanh', input_shape=(train_x.shape[1], train_x.shape[2])))# 第二层,隐藏层神经元节点个数为128, 只返回序列最后一个输出model.add(LSTM(128, return_sequences=False))model.add(Dropout(0.5))# 第三层 因为是回归问题所以使用linearmodel.add(Dense(timesteps_out, activation='linear'))model.compile(loss='mean_squared_error', optimizer='adam')# LSTM训练 input_epochs次数res = model.fit(train_x, label_y, epochs=input_epochs, batch_size=input_batch_size, verbose=2, shuffle=False)# 模型预测train_predict = model.predict(train_x)#test_data_list = list(chain(*test_data))train_predict_list = list(chain(*train_predict))plt.plot(res.history['loss'], label='train')plt.show()#print(model.summary())plot_img(source_data_set, train_predict)# 呈现原始数据,训练结果,验证结果,预测结果
def plot_img(source_data_set, train_predict):plt.figure(figsize=(24, 8))# 原始数据蓝色plt.plot(source_data_set[:, -1], c='b',label = '标签')# 训练数据绿色plt.plot([x for x in train_predict], c='g')plt.legend()plt.show()# 设置观测数据input(X)的步长(时间步),epochs,batch_size
timesteps_in = 3
timesteps_out = 3
epochs = 1000
batch_size = 100
data = pd.read_csv('./shanghai_index_1990_12_19_to_2019_12_11.csv')
data_set = data[['Price']].values.astype('float64')
# 转化为可以用于监督学习的数据
train_x, label_y = get_train_set(data_set, timesteps_in=timesteps_in, timesteps_out=timesteps_out)print(train_x, label_y )
print(train_x.shape)
print(train_x.shape[1], train_x.shape[2])# 使用LSTM进行训练、预测
lstm_model(data_set, train_x, label_y, epochs, batch_size, timesteps_out=timesteps_out)

运行结果:

这篇关于人工智能基础部分13-LSTM网络:预测上证指数走势的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/835077

相关文章

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如