java算法第30天 | ● 332.重新安排行程 ● 51. N皇后 ● 37. 解数独

2024-03-22 09:44

本文主要是介绍java算法第30天 | ● 332.重新安排行程 ● 51. N皇后 ● 37. 解数独,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天是三道困难题,一刷可以先跳过。

332.重新安排行程

本题的重点是使用Map<String,Map<String,Integer>>存储路径以便递归中根据上一个地点检索接下来的选择。注意,因为要求按字母顺序排列优先级,所以内层的Map要用TreeMap<String,Integer>。并且回溯的递归函数要有返回值(因为最终只需要获取一个路径)。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

class Solution {private Deque<String> res;private Map<String, Map<String, Integer>> map;private boolean backTracking(int ticketNum){if(res.size() == ticketNum + 1){return true;}String last = res.getLast();if(map.containsKey(last)){//防止出现nullfor(Map.Entry<String, Integer> target : map.get(last).entrySet()){int count = target.getValue();if(count > 0){res.add(target.getKey());target.setValue(count - 1);if(backTracking(ticketNum)) return true;res.removeLast();target.setValue(count);}}}return false;}public List<String> findItinerary(List<List<String>> tickets) {map = new HashMap<String, Map<String, Integer>>();res = new LinkedList<>();for(List<String> t : tickets){Map<String, Integer> temp;if(map.containsKey(t.get(0))){temp = map.get(t.get(0));temp.put(t.get(1), temp.getOrDefault(t.get(1), 0) + 1);}else{temp = new TreeMap<>();//升序Maptemp.put(t.get(1), 1);}map.put(t.get(0), temp);}res.add("JFK");backTracking(tickets.size());return new ArrayList<>(res);}
}

51. N皇后

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

该题递归的深度是n,每一层递归是遍历当前行每个位置放皇后是否合法,树枝向下是行的增加,横向向右是列位置的遍历。
需要自定义一个判断当前位置是否合法的函数。

class Solution {List<List<String>> res = new ArrayList<>();public List<List<String>> solveNQueens(int n) {char[][] chessboard = new char[n][n];for (char[] c : chessboard) {Arrays.fill(c, '.');}backTrack(n, 0, chessboard);return res;}public void backTrack(int n, int row, char[][] chessboard) {if (row == n) {res.add(Array2List(chessboard));return;}for (int col = 0;col < n; ++col) {if (isValid (row, col, n, chessboard)) {chessboard[row][col] = 'Q';backTrack(n, row+1, chessboard);chessboard[row][col] = '.';}}}public List Array2List(char[][] chessboard) {List<String> list = new ArrayList<>();for (char[] c : chessboard) {list.add(String.copyValueOf(c));}return list;}public boolean isValid(int row, int col, int n, char[][] chessboard) {// 检查列for (int i=0; i<row; ++i) { // 相当于剪枝if (chessboard[i][col] == 'Q') {return false;}}// 检查45度对角线for (int i=row-1, j=col-1; i>=0 && j>=0; i--, j--) {if (chessboard[i][j] == 'Q') {return false;}}// 检查135度对角线for (int i=row-1, j=col+1; i>=0 && j<=n-1; i--, j++) {if (chessboard[i][j] == 'Q') {return false;}}return true;}
}

37. 解数独

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这道题需要再递归函数里进行两次for循环,第一层遍历行,第二层遍历列。
因为只需要找到一条符合条件的结果,因此只要找到了就返回true,因此返回值是boolean类型。

class Solution {public void solveSudoku(char[][] board) {solveSudokuHelper(board);}private boolean solveSudokuHelper(char[][] board){//「一个for循环遍历棋盘的行,一个for循环遍历棋盘的列,// 一行一列确定下来之后,递归遍历这个位置放9个数字的可能性!」for (int i = 0; i < 9; i++){ // 遍历行for (int j = 0; j < 9; j++){ // 遍历列if (board[i][j] != '.'){ // 跳过原始数字continue;}for (char k = '1'; k <= '9'; k++){ // (i, j) 这个位置放k是否合适if (isValidSudoku(i, j, k, board)){board[i][j] = k;if (solveSudokuHelper(board)){ // 如果找到合适一组立刻返回return true;}board[i][j] = '.';}}// 9个数都试完了,都不行,那么就返回falsereturn false;// 因为如果一行一列确定下来了,这里尝试了9个数都不行,说明这个棋盘找不到解决数独问题的解!// 那么会直接返回, 「这也就是为什么没有终止条件也不会永远填不满棋盘而无限递归下去!」}}// 遍历完没有返回false,说明找到了合适棋盘位置了return true;}/*** 判断棋盘是否合法有如下三个维度:*     同行是否重复*     同列是否重复*     9宫格里是否重复*/private boolean isValidSudoku(int row, int col, char val, char[][] board){// 同行是否重复for (int i = 0; i < 9; i++){if (board[row][i] == val){return false;}}// 同列是否重复for (int j = 0; j < 9; j++){if (board[j][col] == val){return false;}}// 9宫格里是否重复int startRow = (row / 3) * 3;int startCol = (col / 3) * 3;for (int i = startRow; i < startRow + 3; i++){for (int j = startCol; j < startCol + 3; j++){if (board[i][j] == val){return false;}}}return true;}
}

这篇关于java算法第30天 | ● 332.重新安排行程 ● 51. N皇后 ● 37. 解数独的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/835061

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

Spring Security--Architecture Overview

1 核心组件 这一节主要介绍一些在Spring Security中常见且核心的Java类,它们之间的依赖,构建起了整个框架。想要理解整个架构,最起码得对这些类眼熟。 1.1 SecurityContextHolder SecurityContextHolder用于存储安全上下文(security context)的信息。当前操作的用户是谁,该用户是否已经被认证,他拥有哪些角色权限…这些都被保

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第