[python]bar_chart_race绘制动态条形图

2024-03-22 08:28

本文主要是介绍[python]bar_chart_race绘制动态条形图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近在 B 站上看到了一个宝藏 up 主,名叫 "Jannchie见齐",专门做动态条形图相关的数据可视化。

可以看到做出的效果还是很不错的,但工具使用的是 JS,不是 Python,于是尝试搜索了一下,看看 Python 有没有相关的库能够做出动态条形图相关的效果。幸运的是还真有相关的库,叫 bar_chart_race,那么下面就来看看相关的用法。

老规矩,使用之前先安装,直接 pip install bar-chart-race 即可。

使用方法

下面来看看使用方法。

import pandas as pd
import bar_chart_race as bcr# 如果出现SSL错误,则全局取消证书验证
# import ssl
# ssl._create_default_https_context = ssl._create_unverified_context# 获取数据
df = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
# 生成 GIF 图像
bcr.bar_chart_race(df, "covid19_horiz.gif")

我们看到代码非常简单,就是将数据转成 pandas 的 DataFrame,然后调用 bar_chart_race 即可生成 GIF 图像。

整体还是不错的,然后我们重点来看一下数据:

其中表头就是 GIF 图表中 Y 轴的部分,但需要注意的是,我们的图表是随时间不断变化的,所以我们在生成 DataFrame 的时候必须将 date 字段设置为索引。然后数据随着时间不断变化,并且条形图之间会根据数据的大小进行排序。

当然了,以上只是默认生成的,bar_chart_race 里面还有很多的参数,我们来看一下。

动态条形图变动态柱状图
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
bcr.bar_chart_race(df, "covid19_horiz.gif", orientation='v')

我们看到为了避免文字发生重叠,自动倾斜了,所以还是比较人性化的。

排序方式,默认为降序
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
# 设置排序方式
bcr.bar_chart_race(df, "covid19_horiz.gif", sort='asc')

条目数限制
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
# 设置最多能显示的条目数,这里最多显示 6 条
bcr.bar_chart_race(df, 'covid19_horiz.gif', n_bars=6)

设置固定类目
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
# 选取如下 5 个国家的数据
bcr.bar_chart_race(df, 'covid19_horiz.gif', fixed_order=['Iran', 'USA', 'Italy', 'Spain', 'Belgium'])

固定数值轴,使其不发生动态变化
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
# 设置数值的最大值,固定数值轴
bcr.bar_chart_race(df, 'covid19_horiz.gif', fixed_max=True)

设置图像帧数,默认 10 帧
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
# 图像帧数:数值越小,越不流畅;越大,越流畅
bcr.bar_chart_race(df, 'covid19_horiz.gif', steps_per_period=3)

可以看到,动图变得不流畅了。

设置帧率,单位时间默认为 500ms
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
# 设置帧率为 200ms,总共 20 帧
bcr.bar_chart_race(df, 'covid19_horiz.gif', steps_per_period=20, period_length=200)

设置每帧增加的标签时间,默认为 False
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
bcr.bar_chart_race(df, 'covid19_horiz.gif', interpolate_period=True)

绘图属性设置
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
# figsize:设置画布大小,默认 (6, 3.5)
# dpi:图像分辨率,默认 144
# label_bars:显示柱状图的数值信息,默认为 True;指定为 False 则不显示;指定为字典,则自定义显示属性
# period_label:显示时间标签信息,默认为 True;指定为 False 则不显示;指定为字典,则自定义显示属性
# period_fmt:设置日期格式
# title:图表标题
# title_size:标题字体大小
# shared_fontdict:全局字体属性,例如 {'family': 'Helvetica', 'weight': 'bold', 'color': 'rebeccapurple'}
bcr.bar_chart_race(df, 'covid19_horiz.gif', figsize=(5, 3), dpi=100, label_bars=False,period_label={'x': .99, 'y': .1, 'ha': 'right', 'color': 'red'},title='COVID-19 Deaths by Country')

条形图属性,可以设置透明度,边框等
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
# bar_kwargs:条形图属性
bcr.bar_chart_race(df, 'covid19_horiz.gif', bar_kwargs={'alpha': .2, 'ec': 'black', 'lw': 3})

添加动态文本
import pandas as pd
import bar_chart_race as bcr
import matplotlib.pyplot as plt# 设置字体,否则无法显示中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # Windows
# plt.rcParams['font.sans-serif'] = ['Hiragino Sans GB'] # Mac
plt.rcParams['axes.unicode_minus'] = Falsedf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])def summary(values, ranks):# 动态文本的内容"""values 为 df 的每一行(Series),例如Belgium            1143.0China              3326.0France             6520.0Germany            1275.0Iran               3294.0Italy             14681.0Netherlands        1490.0Spain             11198.0USA                7418.0United Kingdom     3611.0Name: 2020-04-03, dtype: float64ranks 则是针对 values 的值进行了排名,例如Belgium            1.0China              5.0France             7.0Germany            2.0Iran               4.0Italy             10.0Netherlands        3.0Spain              9.0USA                8.0United Kingdom     6.0Name: 2020-04-03, dtype: float64"""all_people = int(values.sum())ranks_country = ranks.sort_values().indexs = f'总死亡人数:{all_people},死亡人数最多的国家:{ranks_country[-1]},死亡人数最少的国家:{ranks_country[0]}'# 设置文本位置、数值、大小、颜色等return {'x': .99, 'y': .05, 's': s, 'ha': 'right', 'size': 8}
# 添加文本
bcr.bar_chart_race(df, 'covid19_horiz.gif', period_summary_func=summary)

添加垂直条
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
# 设置垂直条数值,分位数
def func(values, ranks):return values.quantile(.9)
# 添加垂直条
bcr.bar_chart_race(df, 'covid19_horiz.gif', perpendicular_bar_func=func)

设置柱状图颜色
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
bcr.bar_chart_race(df, 'covid19_horiz.gif', cmap="plotly3")

那么颜色都有哪些呢?

from pprint import pprint
from bar_chart_race._colormaps import colormaps
pprint(list(colormaps.keys()))
"""
['dark12','dark12_r','plotly3','viridis','cividis','inferno','magma','plasma','blackbody','bluered','electric',........
"""

柱状图颜色不重复
import pandas as pd
import bar_chart_race as bcrdf = pd.read_csv('covid19_tutorial.csv', index_col=["date"])
bcr.bar_chart_race(df, 'covid19_horiz.gif', cmap="plotly3", filter_column_colors=True)

以上就是绝大部分配置,当然源码中注释写的也比较详细,可以点进去看一下。

这篇关于[python]bar_chart_race绘制动态条形图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/834933

相关文章

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

python连接本地SQL server详细图文教程

《python连接本地SQLserver详细图文教程》在数据分析领域,经常需要从数据库中获取数据进行分析和处理,下面:本文主要介绍python连接本地SQLserver的相关资料,文中通过代码... 目录一.设置本地账号1.新建用户2.开启双重验证3,开启TCP/IP本地服务二js.python连接实例1.

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in

Python从零打造高安全密码管理器

《Python从零打造高安全密码管理器》在数字化时代,每人平均需要管理近百个账号密码,本文将带大家深入剖析一个基于Python的高安全性密码管理器实现方案,感兴趣的小伙伴可以参考一下... 目录一、前言:为什么我们需要专属密码管理器二、系统架构设计2.1 安全加密体系2.2 密码强度策略三、核心功能实现详解

Python Faker库基本用法详解

《PythonFaker库基本用法详解》Faker是一个非常强大的库,适用于生成各种类型的伪随机数据,可以帮助开发者在测试、数据生成、或其他需要随机数据的场景中提高效率,本文给大家介绍PythonF... 目录安装基本用法主要功能示例代码语言和地区生成多条假数据自定义字段小结Faker 是一个 python

Python实现AVIF图片与其他图片格式间的批量转换

《Python实现AVIF图片与其他图片格式间的批量转换》这篇文章主要为大家详细介绍了如何使用Pillow库实现AVIF与其他格式的相互转换,即将AVIF转换为常见的格式,比如JPG或PNG,需要的小... 目录环境配置1.将单个 AVIF 图片转换为 JPG 和 PNG2.批量转换目录下所有 AVIF 图