RK3568笔记二十:PP-YOLOE部署测试

2024-03-22 03:12

本文主要是介绍RK3568笔记二十:PP-YOLOE部署测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

若该文为原创文章,转载请注明原文出处。

注:转换测试使用的是Autodl服务器,CUDA11.1版本,py3.8。

一、PP-YOLOE环境安装

创建环境

# 使用 conda 创建一个名为 PaddleYOLO 的环境,并指定 python 版本conda create -n PaddleYOLO python=3.8

激活

conda activate PaddleYOLO

安装(参考官网)

# 安装 Paddle,PaddleYOLO 代码库推荐使用 paddlepaddle-2.4.2 以上的版本
# 教程测试使用 conda 安装 gpu 版 paddlepaddle 2.5
python -m pip install paddlepaddle-gpu==2.5.2.post112 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
二、PP-YOLOE+ 模型简单使用
1、获取 PaddleYOLO 源码
# 拉取 PaddleYOLO
git clone https://github.com/PaddlePaddle/PaddleYOLO.git
# 切换到 PaddleYOLO 目录,安装相关依赖库
cd PaddleYOLO
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
# install
2、模型推理

下載模型

# PP-YOLOE+_s
wget https://bj.bcebos.com/v1/paddledet/models/ppyoloe_plus_crn_s_80e_coco.pdparams
# PP-YOLOE+_m
wget https://bj.bcebos.com/v1/paddledet/models/ppyoloe_plus_crn_m_80e_coco.pdparams

使用 tools/infer.py 进行推理:


# 可能需要安装 9.5.0 版本的 Pillow

pip install Pillow==9.5.0

推理測試

python tools/infer.py -c configs/ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml -o weights=ppyoloe_plus_crn_s_80e_coco.pdparams --infer_img=demo/000000014439_640x640.jpg --draw_threshold=0.5
# -c 指定配置文件,configs/目录下的配置文件(测试使用 ppyoloe_plus_crn_s_80e_coco.yml)也可以是自己添加的,
# -o 或者 --opt 设置配置选项,这里设置了 weights 使用前面手动下载的权重,也可以直接设置
weights=https://bj.bcebos.com/v1/paddledet/models/ppyoloe_plus_crn_s_80e_coco.pdparams
# --infer_dir 指定推理的图片路径或者文件夹,--draw_threshold 画框的阈值,默认 0.5,
图像尺寸是 640*640

推理正常

三、Train
1、数据集下载
# 数据集很大,有18G
http://images.cocodataset.org/zips/train2017.zip
2、train
config=configs/${model_name}/${job_name}.yml
python tools/train.py -c ${config} --eval --amp

根据readme提供的train方法

执行下面命令

python tools/train.py -c configs/ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml --eval --amp

这里没有重新train,直接使用官方模型

四、板卡部署模型
1、针对 RKNN 优化

为了在 RKNPU 上获得更优的推理性能,我们调整了模型的输出结构,这些调整会影响到后处理

的逻辑,主要包含以下内容

• DFL 结构被移至后处理• 新增额外输出,该输出为所有类别分数的累加,用于加速后处理的候选框过滤逻辑具体请参考 rknn_model_zoo 。

我们在前面拉取的 PaddleDetection 源码或者 PaddleYOLO 源码基础上,简单修改下源码(版本是release/2.6

使用的版本是:

https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.6
下载后解压
cd PaddleYOLO-release-2.6

列表 1: ppdet/modeling/architectures/yolo.py

if self.training:yolo_losses = self.yolo_head(neck_feats, self.inputs)return yolo_losses
else:yolo_head_outs = self.yolo_head(neck_feats)
+   return yolo_head_outs

列表 2: ppdet/modeling/heads/ppyoloe_head.py

+ rk_out_list = []
for i, feat in enumerate(feats):_, _, h, w = feat.shapel = h * wavg_feat = F.adaptive_avg_pool2d(feat, (1, 1))cls_logit = self.pred_cls[i](self.stem_cls[i](feat, avg_feat) reg_dist = self.pred_reg[i](self.stem_reg[i](feat, avg_feat))
+   rk_out_list.append(reg_dist)
+   rk_out_list.append(F.sigmoid(cls_logit))
+   rk_out_list.append(paddle.clip(rk_out_list[-1].sum(1, keepdim=True), 0, 1))reg_dist = reg_dist.reshape([-1, 4, self.reg_channels, l]).transpose([0, 2, 3, 1])if self.use_shared_conv:reg_dist = self.proj_conv(F.softmax(reg_dist, axis=1)).squeeze(1)else:reg_dist = F.softmax(reg_dist, axis=1)# cls and regcls_score = F.sigmoid(cls_logit)cls_score_list.append(cls_score.reshape([-1, self.num_classes,1]))reg_dist_list.append(reg_dist)
+ return rk_out_list

上面简单的修改只用于模型导出,训练模型时请注释掉,(上面版本是2.6不要弄错)源码修改也可以直接打补丁(源码版本是 release/2.5),具体参考下 rknn_model_zoo/models/CV/object_detection/yolo/patch_for_model_export/ppyoloe at v1.5.0 · airockchip/rknn_model_zoo (github.com)

2、导出 ONNX 模型

# 切换到 PaddleDetection 或者 PaddleYOLO 源码目录下,然后使用 tools/export_model.py 导出 paddle 模型

cd PaddleDetection
python tools/export_model.py -c configs/ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml -o weights=ppyoloe_plus_crn_s_80e_coco.pdparams exclude_nms=True exclude_post_process=True --output_dir inference_model

# 其中 -c 是设置配置文件,configs/目录下的配置文件

# --output_dir 指定模型保存目录,默认是 output_inference

# -o 或者 --opt 设置配置选项,这里设置了 weights 使用前面手动下载的权重等等

模型保存在 inference_model/ppyoloe_plus_crn_s_80e_coco 目录下:

ppyoloe_plus_crn_s_80e_coco
├── infer_cfg.yml # 模型配置文件信息
├── model.pdiparams # 静态图模型参数
├── model.pdiparams.info # 参数额外信息,一般无需关注
└── model.pdmodel # 静态图模型文件

然后将 paddle 模型转换成 ONNX 模型:

 pip install paddle2onnx
# 转换模型
paddle2onnx --model_dir inference_model/ppyoloe_plus_crn_s_80e_coco --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 11 --save_file ./inference_model/ppyoloe_plus_crn_s_80e_coco/ppyoloe_plus_crn_s_80e_coco.onnx
# 固定模型 shape
python -m paddle2onnx.optimize --input_model inference_model/ppyoloe_plus_crn_s_80e_coco/ppyoloe_plus_crn_s_80e_coco.onnx --output_model inference_model/ppyoloe_plus_crn_s_80e_coco/ppyoloe_plus_crn_s_80e_coco.onnx --input_shape_dict "{'image':[1,3,640,640]}"

使用 Netron 查看下导出的ppyoloe_plus_crn_s_80e_coco.onnx模型的输出和输出:

3、导出RKNN模型

使用 rknn-Toolkit2 工具,将onnx 转换为 rknn模型,并进行推理测试(参考配套例程):

代码参考rknn_model_zoo程序。

import os
import cv2
import sys
​
import numpy as np
from copy import copy
from rknn.api import RKNN
​
# model,image path
ONNX_MODEL = './ppyoloe_plus_crn_s_80e_coco.onnx'
RKNN_MODEL = 'ppyoloe_plus_crn_s_80e_coco.rknn'
IMG_PATH = './test.jpg'
#IMG_PATH = './000000087038.jpg'
DATASET = './dataset.txt'
​
QUANTIZE_ON = True
​
OBJ_THRESH = 0.5
NMS_THRESH = 0.45
# OBJ_THRESH = 0.001
# NMS_THRESH = 0.65
​
IMG_SIZE = (640, 640)  # (width, height)
​
CLASSES = ("person", "bicycle", "car","motorbike ","aeroplane ","bus ","train","truck ","boat","traffic light","fire hydrant","stop sign ","parking meter","bench","bird","cat","dog ","horse ","sheep","cow","elephant","bear","zebra ","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife ","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza ","donut","cake","chair","sofa","pottedplant","bed","diningtable","toilet ","tvmonitor","laptop  ","mouse    ","remote ","keyboard ","cell phone","microwave ","oven ","toaster","sink","refrigerator ","book","clock","vase","scissors ","teddy bear ","hair drier", "toothbrush ")
​
def filter_boxes(boxes, box_confidences, box_class_probs):"""Filter boxes with object threshold."""box_confidences = box_confidences.reshape(-1)
​class_max_score = np.max(box_class_probs, axis=-1)classes = np.argmax(box_class_probs, axis=-1)
​_class_pos = np.where(class_max_score* box_confidences >= OBJ_THRESH)scores = (class_max_score* box_confidences)[_class_pos]
​boxes = boxes[_class_pos]classes = classes[_class_pos]
​return boxes, classes, scores
​
def nms_boxes(boxes, scores):"""Suppress non-maximal boxes.# Returnskeep: ndarray, index of effective boxes."""x = boxes[:, 0]y = boxes[:, 1]w = boxes[:, 2] - boxes[:, 0]h = boxes[:, 3] - boxes[:, 1]
​areas = w * horder = scores.argsort()[::-1]
​keep = []while order.size > 0:i = order[0]keep.append(i)
​xx1 = np.maximum(x[i], x[order[1:]])yy1 = np.maximum(y[i], y[order[1:]])xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
​w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)inter = w1 * h1
​ovr = inter / (areas[i] + areas[order[1:]] - inter)inds = np.where(ovr <= NMS_THRESH)[0]order = order[inds + 1]keep = np.array(keep)return keep
​
def dfl(position):# Distribution Focal Loss (DFL)import torchx = torch.tensor(position)n,c,h,w = x.shapep_num = 4mc = c//p_numy = x.reshape(n,p_num,mc,h,w)y = y.softmax(2)acc_metrix = torch.tensor(range(mc)).float().reshape(1,1,mc,1,1)y = (y*acc_metrix).sum(2)return y.numpy()
​
​
def box_process(position):grid_h, grid_w = position.shape[2:4]col, row = np.meshgrid(np.arange(0, grid_w), np.arange(0, grid_h))col = col.reshape(1, 1, grid_h, grid_w)row = row.reshape(1, 1, grid_h, grid_w)grid = np.concatenate((col, row), axis=1)stride = np.array([IMG_SIZE[1]//grid_h, IMG_SIZE[0]//grid_w]).reshape(1,2,1,1)
​position = dfl(position)box_xy  = grid +0.5 -position[:,0:2,:,:]box_xy2 = grid +0.5 +position[:,2:4,:,:]xyxy = np.concatenate((box_xy*stride, box_xy2*stride), axis=1)
​return xyxy
​
def post_process(input_data):boxes, scores, classes_conf = [], [], []defualt_branch=3pair_per_branch = len(input_data)//defualt_branch# Python 忽略 score_sum 输出for i in range(defualt_branch):boxes.append(box_process(input_data[pair_per_branch*i]))classes_conf.append(input_data[pair_per_branch*i+1])scores.append(np.ones_like(input_data[pair_per_branch*i+1][:,:1,:,:], dtype=np.float32))
​def sp_flatten(_in):ch = _in.shape[1]_in = _in.transpose(0,2,3,1)return _in.reshape(-1, ch)
​boxes = [sp_flatten(_v) for _v in boxes]classes_conf = [sp_flatten(_v) for _v in classes_conf]scores = [sp_flatten(_v) for _v in scores]
​boxes = np.concatenate(boxes)classes_conf = np.concatenate(classes_conf)scores = np.concatenate(scores)
​# filter according to thresholdboxes, classes, scores = filter_boxes(boxes, scores, classes_conf)
​# nmsnboxes, nclasses, nscores = [], [], []for c in set(classes):inds = np.where(classes == c)b = boxes[inds]c = classes[inds]s = scores[inds]keep = nms_boxes(b, s)
​if len(keep) != 0:nboxes.append(b[keep])nclasses.append(c[keep])nscores.append(s[keep])
​if not nclasses and not nscores:return None, None, None
​boxes = np.concatenate(nboxes)classes = np.concatenate(nclasses)scores = np.concatenate(nscores)
​return boxes, classes, scores
​
def draw(image, boxes, scores, classes):for box, score, cl in zip(boxes, scores, classes):top, left, right, bottom = [int(_b) for _b in box]print('class: {}, score: {}'.format(CLASSES[cl], score))print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))
​cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)cv2.putText(image, '{:.2f}'.format(score),(top, left - 6),cv2.FONT_HERSHEY_SIMPLEX,0.6, (0, 0, 255), 2)
​
def letter_box(im, new_shape, color=(0, 0, 0)):# Resize and pad image while meeting stride-multiple constraintsshape = im.shape[:2]  # current shape [height, width]if isinstance(new_shape, int):new_shape = (new_shape, new_shape)
​# Scale ratio (new / old)r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
​# Compute paddingratio = r  # width, height ratiosnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
​dw /= 2  # divide padding into 2 sidesdh /= 2
​if shape[::-1] != new_unpad:  # resizeim = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))left, right = int(round(dw - 0.1)), int(round(dw + 0.1))im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add borderreturn im, ratio, (dw, dh)
​
def get_real_box(src_shape, box, dw, dh, ratio):bbox = copy(box)# unletter_box resultbbox[:,0] -= dwbbox[:,0] /= ratiobbox[:,0] = np.clip(bbox[:,0], 0, src_shape[1])
​bbox[:,1] -= dhbbox[:,1] /= ratiobbox[:,1] = np.clip(bbox[:,1], 0, src_shape[0])
​bbox[:,2] -= dwbbox[:,2] /= ratiobbox[:,2] = np.clip(bbox[:,2], 0, src_shape[1])
​bbox[:,3] -= dhbbox[:,3] /= ratiobbox[:,3] = np.clip(bbox[:,3], 0, src_shape[0])return bbox
​
if __name__ == '__main__':# Create RKNN object#rknn = RKNN(verbose=True)rknn = RKNN()
​# pre-process config,target_platform='rk3588'print('--> Config model')rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], target_platform='rk3588')print('done')
​# Load ONNX modelprint('--> Loading model')ret = rknn.load_onnx(model=ONNX_MODEL)if ret != 0:print('Load model failed!')exit(ret)print('done')
​# Build modelprint('--> Building model')ret = rknn.build(do_quantization=QUANTIZE_ON, dataset=DATASET)if ret != 0:print('Build model failed!')exit(ret)print('done')
​# Export RKNN modelprint('--> Export rknn model')ret = rknn.export_rknn(RKNN_MODEL)if ret != 0:print('Export rknn model failed!')exit(ret)print('done')
​# Init runtime environmentprint('--> Init runtime environment')ret = rknn.init_runtime()# ret = rknn.init_runtime('rk3566')if ret != 0:print('Init runtime environment failed!')exit(ret)print('done')
​# Set inputsimg_src = cv2.imread(IMG_PATH)src_shape = img_src.shape[:2]img, ratio, (dw, dh) = letter_box(img_src, IMG_SIZE)img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)#img = cv2.resize(img_src, IMG_SIZE)
​# Inferenceprint('--> Running model')outputs = rknn.inference(inputs=[img])print('done')
​# post processboxes, classes, scores = post_process(outputs)
​img_p = img_src.copy()if boxes is not None:draw(img_p, get_real_box(src_shape, boxes, dw, dh, ratio), scores, classes)cv2.imwrite("result.jpg", img_p)
五、部署测试

rknn_model_zoo测试前面有提及,这里不在复现。自行测试。

六、参考连接

GitHub - PaddlePaddle/PaddleYOLO: 🚀🚀🚀 YOLO series of PaddlePaddle implementation, PP-YOLOE+, RT-DETR, YOLOv5, YOLOv6, YOLOv7, YOLOv8, YOLOX, YOLOv5u, YOLOv7u, YOLOv6Lite, RTMDet and so on. 🚀🚀🚀

https://github.com/airockchip/rknn_model_zoo/tree/main/models/CV/object_detection/yolo/

注意:rknn_model_zoo使用的是PaddleDetection版本2.5,这里使用的是PaddleYOLO版本2.6.

如有侵权,或需要完整代码,请及时联系博主。

这篇关于RK3568笔记二十:PP-YOLOE部署测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/834418

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

字节面试 | 如何测试RocketMQ、RocketMQ?

字节面试:RocketMQ是怎么测试的呢? 答: 首先保证消息的消费正确、设计逆向用例,在验证消息内容为空等情况时的消费正确性; 推送大批量MQ,通过Admin控制台查看MQ消费的情况,是否出现消费假死、TPS是否正常等等问题。(上述都是临场发挥,但是RocketMQ真正的测试点,还真的需要探讨) 01 先了解RocketMQ 作为测试也是要简单了解RocketMQ。简单来说,就是一个分

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【测试】输入正确用户名和密码,点击登录没有响应的可能性原因

目录 一、前端问题 1. 界面交互问题 2. 输入数据校验问题 二、网络问题 1. 网络连接中断 2. 代理设置问题 三、后端问题 1. 服务器故障 2. 数据库问题 3. 权限问题: 四、其他问题 1. 缓存问题 2. 第三方服务问题 3. 配置问题 一、前端问题 1. 界面交互问题 登录按钮的点击事件未正确绑定,导致点击后无法触发登录操作。 页面可能存在

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2