数学建模预测类问题-PSO优化BP的电池荷电状态预测

2024-03-21 17:30

本文主要是介绍数学建模预测类问题-PSO优化BP的电池荷电状态预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

​  1、BP神经网络

    BP神经网络是将网络的输出与期望输出间的误差归结为权值和阈值的“过错”,通过反向传播把误差“分摊”给各个神经元的权值和阈值。BP神经网络由3层组成,输入层,隐含层和输出层。结构图如下图所示。

​编辑

2、PSO优化BP神经网络

    由于BP神经网络初始权值和阈值会导致预测效果的不佳,因此可建立相关的适应度函数,使用PSO对BP神经网络的权值和阈值进行寻优,得到较好的预测效果。

3、部分代码

clc
clear all
%节点个数
inputnum=2;
hiddennum=5;
outputnum=1;k=rand(1,40);%k是1*2000的向量,里面是0-1的随机均匀分布的数
[m,n]=sort(k);%sort默认按升序进行排列,m是排序后的矩阵,n是索引
train0=xlsread('data02c','A2:C41')
% train0=xlsread('时域数据','B7:D48');
[a,b]=size(train0);%指标矩阵维度
input_train=train0(n(1:30),1:2)';
output_train=train0(n(1:30),3)';
input_test=train0(n(31:40),1:2)';
output_test=train0(n(31:40),3)';%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);%构建网络
net=newff(inputn,outputn,hiddennum);% 参数初始化
%粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;maxgen=100;   % 进化次数  
sizepop=20;   %种群规模Vmax=1;
Vmin=-1;
popmax=5;
popmin=-5;for i=1:sizepoppop(i,:)=5*rands(1,21);V(i,:)=rands(1,21);fitness(i)=fun(pop(i,:),inputnum,hiddennum,outputnum,net,inputn,outputn);
end% 个体极值和群体极值
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:);   %全局最佳
gbest=pop;    %个体最佳
fitnessgbest=fitness;   %个体最佳适应度值
fitnesszbest=bestfitness;   %全局最佳适应度值%% 迭代寻优
for i=1:maxgenifor j=1:sizepop%速度更新V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));V(j,find(V(j,:)>Vmax))=Vmax;V(j,find(V(j,:)<Vmin))=Vmin;%种群更新pop(j,:)=pop(j,:)+0.2*V(j,:);pop(j,find(pop(j,:)>popmax))=popmax;pop(j,find(pop(j,:)<popmin))=popmin;%自适应变异pos=unidrnd(21);if rand>0.95pop(j,pos)=5*rands(1,1);end%适应度值fitness(j)=fun(pop(j,:),inputnum,hiddennum,outputnum,net,inputn,outputn);endfor j=1:sizepop%个体最优更新if fitness(j) < fitnessgbest(j)gbest(j,:) = pop(j,:);fitnessgbest(j) = fitness(j);end%群体最优更新 if fitness(j) < fitnesszbestzbest = pop(j,:);fitnesszbest = fitness(j);endendyy(i)=fitnesszbest;    end%% 结果分析
plot(yy)
title(['适应度曲线  ' '终止代数=' num2str(maxgen)]);
xlabel('进化代数');ylabel('适应度');x=zbest;

4、结果展示

​编辑

​编辑

​编辑

这篇关于数学建模预测类问题-PSO优化BP的电池荷电状态预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/833368

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py