controlnet前向代码解析

2024-03-21 16:10

本文主要是介绍controlnet前向代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ControlNet|使用教程 各模型算法说明以及使用解析 - openAI本本介绍了如何在Stable Diffusion中使用ControlNet生成高质量图片的方法,包括骨骼提取、边缘线处理、引导设置、语义分割、涂鸦等功能的详细介绍,帮助用户快速上手使用ControlNet。https://openai.wiki/controlnet-guide.htmlcldm:controlnet版本的ldm

apply_uniformer=Uniformerdetector()
model=create_model('')
model.load_state_dict(load_state_dict('',location='cuda'))
ddim_sampler=DDIMSampler(model) 默认ddimimg:输入图片
prompt:
a_prompt:默认的好的prompt
n_prompt: 负面prompt
num_sample: 出几张图
image_resolution: 对controlnet中输入的图片进行最长边等比resize
detect_resolution: 
ddim_steps: 采样步数,一般20-30,值越大越精细
guess_mode:可以不写提示词
strength(control scales):  这里就是对应webui中的weights,代表controlnet生成图片的权重占比
影响,在controlnet代码中表示13步中control侧的影响,一共13个网络control侧weights=0,即不对
原始的sd进行梯度更新,但是如果对cond中的c_concat设为None,则默认不使用control,不会触发weights,
优先级高一点
guidance scale:   在webui中的这个参数是guidance和cfg有关系, 
1,中文为强度引导,在理解此功能之前,应该知道生成图片的步数功能,步数代表生成一张图片刷新计算
多少次,假设你设置的生成步数为20步,引导强度设置为1时,代表这20步中的每1步都会被controlnet
引导1次,个人认为强度数值为1,效果最佳。  
在contrilnet作者代码中是如下作用:
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:model_output = self.model.apply_model(x, t, c)
else:model_t = self.model.apply_model(x, t, c)model_uncond = self.model.apply_model(x, t, unconditional_conditioning)model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)process->
input_image=HWC3(input_image)->
detected_map=apply_uniformer(resize_image(input_image,detect_resolution))->
detected_img=cv2.resize(detected_map)->
control=torch.from_numpy(detected_img)->cond={'c_concat':[control],'c_crossattn':
[model.get_learned_conditioning([prompt+a_prompt])]}->
un_cond={'c_concat':[None if guess_mode else [control],
'c_crossattn':[model.get_learned_conditioning([n_prompt])]]}->
model.control_scales=[strength*(0.825**float(12-i)) for i in range(13)] 
if guess_mode else ([strength]*13)->
samples,_=ddim_sampler.sample(ddim_steps,num_samples,shape,cond,verbose=False,
eta=eta,unconditional_guidance_scale=scale,unconditional_conditioning=uncond)->
= make_schedule(ddim_num_steps=ddim_steps,ddim_eta=eta)->
== ddim_timesteps=make_ddim_timesteps()->
= samplers,intermediates=ddim_sampler(condition,size...unconditional_guidance_scale,
unconditional_conditioning)->
== img=torch.randn(shape)->
== ts=torch.full((b,),step,device)->
== timesteps=ddpm_num_timesteps->
== outs=p_sample_ddim(img,cond,ts,...)->
=== model_t=model.apply_model(x(img),t(ts),c(cond))->
- diffusion_model=model.diffusion_model->
- cond_txt=torch.cat(cond['c_crossattn',1])->
- control=control_model(x_noisy,hint=torch.cat(cond['c_concat'],1),t,cond_txt)->
-- t_emb=timestep_embedding(timesteps,model_channels,repeat_only=False)->
-- emb=time_embed(t_embed)->
-- guided_hint=TimestepEmbedSequential(hint,emd,context)->
-- input_blocks,sero_convs->
-- h=middle_block(h,emb,context)->
-- outs.append(middle_block_out(h,emb,context))->
- control=[c*scale for c,scale in zip(control,control_scales)]->
- eps=diffusion_model(x_noisy,t,cond_txt,control,only_mid_control)->
-- t_emb=timestep_embedding(timesteps,model_channels,repeat_only)->
-- emb=time_embed(t_emb)->
-- h=module(h,emb,context)->
-- h=middle_block(h,emb,context)->
-- only_mid_control->只在中间阶段添加control,但是control=None,则都不添加->
-- h=torch.cat([h,hs.pop()+control.pop()],dim=1)->
-- h=module(h,emb,context)->
-- out(h)->
=== model_uncond=model.apply_model(x,t,unconditional_conditioning)->
=== model_output=model_uncond+unconditional_guidance_scale*(model_t-model_uncond)->
=== pred_x0,-,-=model.first_stage_model.quantize(pred_x0)->
x_samples=model.decode_first_stage(samples) vae中的decode部分->
= z=1./scale_factor*z->
= first_stage_model.decode(z)->
== z = post_quant_conv(z)->
== dec=decoder(z)->
x_samples=(einops.rearrange(x_samples,'b c h w -> b h w c')*127.5+127.5)
.cpu().numpy().clip(0,255).astype(np/unint8)->
results

要分析下controlnet的yaml文件,在params中分成了4个部分,分别是control_stage_config、unnet_config、first_stage_config、cond_stage_config。其中control_stage_config对应的是13层的controlnet,unet_config对应的是diffusion model,first_stage_config对应的是vae中的decode部分。

因此当control=None时,就是webui中的sd1.5/2.1。

这篇关于controlnet前向代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/833143

相关文章

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

关于WebSocket协议状态码解析

《关于WebSocket协议状态码解析》:本文主要介绍关于WebSocket协议状态码的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录WebSocket协议状态码解析1. 引言2. WebSocket协议状态码概述3. WebSocket协议状态码详解3

CSS Padding 和 Margin 区别全解析

《CSSPadding和Margin区别全解析》CSS中的padding和margin是两个非常基础且重要的属性,它们用于控制元素周围的空白区域,本文将详细介绍padding和... 目录css Padding 和 Margin 全解析1. Padding: 内边距2. Margin: 外边距3. Padd

Oracle数据库常见字段类型大全以及超详细解析

《Oracle数据库常见字段类型大全以及超详细解析》在Oracle数据库中查询特定表的字段个数通常需要使用SQL语句来完成,:本文主要介绍Oracle数据库常见字段类型大全以及超详细解析,文中通过... 目录前言一、字符类型(Character)1、CHAR:定长字符数据类型2、VARCHAR2:变长字符数

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放