controlnet前向代码解析

2024-03-21 16:10

本文主要是介绍controlnet前向代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ControlNet|使用教程 各模型算法说明以及使用解析 - openAI本本介绍了如何在Stable Diffusion中使用ControlNet生成高质量图片的方法,包括骨骼提取、边缘线处理、引导设置、语义分割、涂鸦等功能的详细介绍,帮助用户快速上手使用ControlNet。https://openai.wiki/controlnet-guide.htmlcldm:controlnet版本的ldm

apply_uniformer=Uniformerdetector()
model=create_model('')
model.load_state_dict(load_state_dict('',location='cuda'))
ddim_sampler=DDIMSampler(model) 默认ddimimg:输入图片
prompt:
a_prompt:默认的好的prompt
n_prompt: 负面prompt
num_sample: 出几张图
image_resolution: 对controlnet中输入的图片进行最长边等比resize
detect_resolution: 
ddim_steps: 采样步数,一般20-30,值越大越精细
guess_mode:可以不写提示词
strength(control scales):  这里就是对应webui中的weights,代表controlnet生成图片的权重占比
影响,在controlnet代码中表示13步中control侧的影响,一共13个网络control侧weights=0,即不对
原始的sd进行梯度更新,但是如果对cond中的c_concat设为None,则默认不使用control,不会触发weights,
优先级高一点
guidance scale:   在webui中的这个参数是guidance和cfg有关系, 
1,中文为强度引导,在理解此功能之前,应该知道生成图片的步数功能,步数代表生成一张图片刷新计算
多少次,假设你设置的生成步数为20步,引导强度设置为1时,代表这20步中的每1步都会被controlnet
引导1次,个人认为强度数值为1,效果最佳。  
在contrilnet作者代码中是如下作用:
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:model_output = self.model.apply_model(x, t, c)
else:model_t = self.model.apply_model(x, t, c)model_uncond = self.model.apply_model(x, t, unconditional_conditioning)model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)process->
input_image=HWC3(input_image)->
detected_map=apply_uniformer(resize_image(input_image,detect_resolution))->
detected_img=cv2.resize(detected_map)->
control=torch.from_numpy(detected_img)->cond={'c_concat':[control],'c_crossattn':
[model.get_learned_conditioning([prompt+a_prompt])]}->
un_cond={'c_concat':[None if guess_mode else [control],
'c_crossattn':[model.get_learned_conditioning([n_prompt])]]}->
model.control_scales=[strength*(0.825**float(12-i)) for i in range(13)] 
if guess_mode else ([strength]*13)->
samples,_=ddim_sampler.sample(ddim_steps,num_samples,shape,cond,verbose=False,
eta=eta,unconditional_guidance_scale=scale,unconditional_conditioning=uncond)->
= make_schedule(ddim_num_steps=ddim_steps,ddim_eta=eta)->
== ddim_timesteps=make_ddim_timesteps()->
= samplers,intermediates=ddim_sampler(condition,size...unconditional_guidance_scale,
unconditional_conditioning)->
== img=torch.randn(shape)->
== ts=torch.full((b,),step,device)->
== timesteps=ddpm_num_timesteps->
== outs=p_sample_ddim(img,cond,ts,...)->
=== model_t=model.apply_model(x(img),t(ts),c(cond))->
- diffusion_model=model.diffusion_model->
- cond_txt=torch.cat(cond['c_crossattn',1])->
- control=control_model(x_noisy,hint=torch.cat(cond['c_concat'],1),t,cond_txt)->
-- t_emb=timestep_embedding(timesteps,model_channels,repeat_only=False)->
-- emb=time_embed(t_embed)->
-- guided_hint=TimestepEmbedSequential(hint,emd,context)->
-- input_blocks,sero_convs->
-- h=middle_block(h,emb,context)->
-- outs.append(middle_block_out(h,emb,context))->
- control=[c*scale for c,scale in zip(control,control_scales)]->
- eps=diffusion_model(x_noisy,t,cond_txt,control,only_mid_control)->
-- t_emb=timestep_embedding(timesteps,model_channels,repeat_only)->
-- emb=time_embed(t_emb)->
-- h=module(h,emb,context)->
-- h=middle_block(h,emb,context)->
-- only_mid_control->只在中间阶段添加control,但是control=None,则都不添加->
-- h=torch.cat([h,hs.pop()+control.pop()],dim=1)->
-- h=module(h,emb,context)->
-- out(h)->
=== model_uncond=model.apply_model(x,t,unconditional_conditioning)->
=== model_output=model_uncond+unconditional_guidance_scale*(model_t-model_uncond)->
=== pred_x0,-,-=model.first_stage_model.quantize(pred_x0)->
x_samples=model.decode_first_stage(samples) vae中的decode部分->
= z=1./scale_factor*z->
= first_stage_model.decode(z)->
== z = post_quant_conv(z)->
== dec=decoder(z)->
x_samples=(einops.rearrange(x_samples,'b c h w -> b h w c')*127.5+127.5)
.cpu().numpy().clip(0,255).astype(np/unint8)->
results

要分析下controlnet的yaml文件,在params中分成了4个部分,分别是control_stage_config、unnet_config、first_stage_config、cond_stage_config。其中control_stage_config对应的是13层的controlnet,unet_config对应的是diffusion model,first_stage_config对应的是vae中的decode部分。

因此当control=None时,就是webui中的sd1.5/2.1。

这篇关于controlnet前向代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/833143

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

代码随想录冲冲冲 Day39 动态规划Part7

198. 打家劫舍 dp数组的意义是在第i位的时候偷的最大钱数是多少 如果nums的size为0 总价值当然就是0 如果nums的size为1 总价值是nums[0] 遍历顺序就是从小到大遍历 之后是递推公式 对于dp[i]的最大价值来说有两种可能 1.偷第i个 那么最大价值就是dp[i-2]+nums[i] 2.不偷第i个 那么价值就是dp[i-1] 之后取这两个的最大值就是d

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

OWASP十大安全漏洞解析

OWASP(开放式Web应用程序安全项目)发布的“十大安全漏洞”列表是Web应用程序安全领域的权威指南,它总结了Web应用程序中最常见、最危险的安全隐患。以下是对OWASP十大安全漏洞的详细解析: 1. 注入漏洞(Injection) 描述:攻击者通过在应用程序的输入数据中插入恶意代码,从而控制应用程序的行为。常见的注入类型包括SQL注入、OS命令注入、LDAP注入等。 影响:可能导致数据泄

从状态管理到性能优化:全面解析 Android Compose

文章目录 引言一、Android Compose基本概念1.1 什么是Android Compose?1.2 Compose的优势1.3 如何在项目中使用Compose 二、Compose中的状态管理2.1 状态管理的重要性2.2 Compose中的状态和数据流2.3 使用State和MutableState处理状态2.4 通过ViewModel进行状态管理 三、Compose中的列表和滚动

D4代码AC集

贪心问题解决的步骤: (局部贪心能导致全局贪心)    1.确定贪心策略    2.验证贪心策略是否正确 排队接水 #include<bits/stdc++.h>using namespace std;int main(){int w,n,a[32000];cin>>w>>n;for(int i=1;i<=n;i++){cin>>a[i];}sort(a+1,a+n+1);int i=1