分布式——吞吐量巨强、Hbase的承载者 LSMT

2024-03-21 14:38

本文主要是介绍分布式——吞吐量巨强、Hbase的承载者 LSMT,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文始发于个人公众号:TechFlow,原创不易,求个关注


今天是分布式系统的第九篇文章。

今天给大家分享的内容是LSM树,它的英文是Log-structed Merge-tree。看着有些发怵,但其实它的原理不难,和B树相比简直算是小儿科了。

并且这也是一个非常经典的数据结构,并且在大数据系统当中有非常广泛的应用。有许多耳熟能详的经典系统,底层就是基于LSM树实现的。因此,今天就和大家一起来深入学习一下它的原理。

背景知识

首先,我们先从背景知识开始。我们之前介绍B+树的时候说过,B+树和B树最大的不同就是将所有的数据都放在了叶子节点。从而优化了我们批量插入以及批量查询的效率,而优化的核心逻辑就是因为无论是什么存储介质,顺序存储的效率一定要比随机存储更高,并且高的还不是一点半点。这个已经算是老生常谈了,如果我没记错的话,这已经是我第三次在文章当中提到这一点了。

我最近看到了一张图,很好地阐述了随机读取和顺序读取两者的效率差,我们来看下面这张图。其中绿色的部分表示硬盘顺序读取的最大速度,而红色表示随机读取时的速度。

我们看下纵坐标就知道,这两者差的不是一点半点,已经有数量级的差距了。而且还不止是一个数量级,至少相差了三个数量级,显然这是非常恐怖的。另外,这个差距并不只是在传统的机械硬盘上存在,即使是现在比较先进的SSD固态硬盘上,也一样存在。也就是说这个差距是介质无关的。

直观优化

既然随机读取和顺序读取的效率差了这么多,不由得不让人心动。如果能够发明一个数据结构可以充分地利用上这一点,那么我们的系统对数据的吞吐能力一定可以再上一个台阶。对于许多科技公司而言,尤其是大数据公司,因为数据量带来的机器开销的费用占据了日常支出的大头。如果能够很好地解决这个问题,显然可以节约大量的资源

一个朴素的想法就是将所有的读写都设计成顺序读写,比如日志系统就是一个典型的例子。在我们记录日志的时候,总是添加在文件的末尾,而不会插入在文件的中间。由于我们总是添加在文件末尾,在磁盘上这是一个顺序的读写。但我们把读写都设计成顺序的,也就意味着我们当我们要查找的内容在文件中间的时候,我们必须要读入文件中的所有内容

这个思路应用最广泛的地方有两个,一个是数据库的日志当中。在我们用数据库执行写入或者修改操作的时候,数据库会将所有的变更写成log记录下来。还有一处是消息系统的中间件,比如kafka。

但是在复杂的增删查改的场景当中,尤其是涉及到批量读写的场景,简单的文件顺序读写就不能满足需求了。当然我们可以引入哈希表或者是B+树这些数据结构实现功能,但这些复杂的数据结构都避免不了比较慢的随机读写操作,而我们希望随机读写能尽量减少,正是基于这个原理,LSMT被发明了出来。LSMT使用了一种独特的机制牺牲了一些读操作的性能,保证了写操作的能力,它能够让所有的操作顺序化,几乎完全避免了随机读写。

在我们介绍LSMT的原理之前,我们先来介绍一下它的子结构SSTable

SSTable

第一次看到这个单词的时候觉得一头雾水是正常的,SSTable的全称是Sorted String Table,本质就是一个KV结构顺序排列的文件。我们来看下下图:

最基础的SSTable就是上图当中右侧的部分,即key和value的键值对按照key值的大小排序,并存储在文件当中。当我们需要查找某个key值对应的数据的时候,我们会将整个文件读入进内存,进行查找。同样,写入也是如此,我们会将插入的操作在内存中进行,得到结果之后,直接覆盖原本的文件,而不会在文件当中修改,因为这会牵扯到移动大量的数据。

如果文件中的数据量过大,我们需要另外建立一个索引文件,存储不同的key值对应的offset,方便我们在读取文件的时候快速查找到我们想要查找的文件。索引文件即上图当中左边部分。

需要注意,SSTable是不可修改的,我们只会用新的SSTable去覆盖旧的,而不会再原本的基础上修改。因为修改会涉及随机读写,这是我们不希望的。

LSM的增删改查

理解了SSTable之后,我们来看下基本的LSM实现原理。

其实最基本的LSM原理非常简单,本质上就是在SSTable的基础上增加了一个Memtable,Memtable顾名思义就是存放在内存当中的表结构。当然也不一定是表结构,也可以是树结构,这并不影响,总之是一个可以快速增删改查的数据结构,比如红黑树、SkipList都行。其次我们还需要一个log文件,和数据库当中的log一样,记录数据发生的变化。方便系统故障或者是数据丢失的时候进行找回,所以整体的架构如下:

查找

我们先来看查找的情况,当我们需要查找一个元素的时候,我们会先查找Memtable。原因也很好理解,它就在内存当中,不需要额外读取文件,如果Memtable当中没有找到,我们再一个一个查找SSTable,由于SSTable当中的数据也是顺序存储的,所以我们可以使用二分查找,整个查找的速度也会非常快。但是有一点,由于SSTable的数量可能会很多,而且我们必须要顺序查找,所以当SSTable数量很大的时候,也会影响查找的速度。为了解决这个问题,我们可以引入布隆过滤器进行优化。我们对每一个SSTable建立一个布隆过滤器,可以快速地判断元素是否在某一个SSTable当中。布隆过滤器判断元素不存在是一定准确的,而判断存在可能会有一个很小的几率失误,但这个失误率是可以控制的,我们可以设置合理的参数,使得失误率足够低。

加上了布隆过滤器之后的查找操作是这样的:

上图的星星表示布隆过滤器,也就是说我们先通过布隆过滤器判断元素是否存在之后,再进行查找。

布隆过滤器在之前的文章当中曾经和大家介绍过,有遗忘或者是新关注的同学可以点击下方链接回顾一下。

大数据算法——布隆过滤器

增删改

除了查找之外的其他操作都发生在Memtable当中,比如当我们要增加一个元素的时候,我们直接增加在Memtable,而不是写入文件。这也保证了增加的速度可以做到非常快。

除此之外,修改和删除也一样,如果需要修改的元素刚好在Memtable当中,没什么好说的我们直接进行修改。那如果不在Memtable当中,如果我们要先查找到再去修改免不了需要进行磁盘读写,这会消耗大量资源。所以我们还是在Memtable当中进行操作,我们会插入这个元素,标记成修改或者是删除。

所以我们可以把增删改这三个操作都看成是添加,但是这就带来了一个问题,这么操作会导致很快Memtable当中就积累了大量数据,而我们的内存资源也是有限的,显然不能无限拓张。为了解决这个问题,我们需要定期将Memtable当中的内容存储到磁盘,存储成一个SSTable。这也是SSTable的来源,SSTable当中的数据不是凭空出现的,而是LSM落盘产生的。

同样,由于我们不断地落盘同样也会导致SSTable的数量增加,前面我们也已经分析过了,SSTable的数量增加会影响我们查找的效率,所以我们不能放任它无限增加。再加上我们还存储了许多修改和删除的信息,我们需要把这些信息落实。为了达成这点,我们需要定期将所有的SSTable合并,在合并的过程当中我们完成数据的删除以及修改工作。换句话说,之前的删除、修改操作只是被记录了下来,直到合并的时候才真正执行。

整个归并的过程并不难,类似于归并排序当中的归并操作,只是我们需要加上状态的判断。

总结

我们回顾一下LSMT的整个过程,虽然说是树,但其实树形结构并不明显。但如果我们观察一下查找元素时候的查询顺序,其实是从Memtable,然后沿着SSTable顺序往下的,这点和树形结构是一致的,可以看成一个比较”窄“的树。如果还是觉得这个数据结构长得不那么像一棵树是正常的,我们不用纠结。另外,从原理上来看,简直有些简单粗暴地过头,但是从实际结果来看,它的效果却非常好,在Hbase、kudu当中有着广泛应用。

我们对比一下它和B+树,在B+树当中,我们为了能够快速读取而使用了多路平衡树,这样可以迅速找到对应key的节点。我们只需要读入节点当中的内容即可,但也正因为平衡树的结构,导致了我们在写入数据的时候会引起树结构的变动,也就涉及到多次文件的随机读写。当我们数据的吞吐量很大的时候,会带来巨大的开销。而LSMT则不然,我们读取的时候效率比B+树要低,但是对于大数据的写入支持得更好。在大数据场景当中,许多对于数据的吞吐量有着很高的要求,比如消息系统、分布式存储等。这个时候B+树就有些无能为力了,但是同样,如果我们需要保证查找的效率,那LSMT也不太合适,因此两者其实并没有谁比谁更优,而是针对的场景不同。

最后,关于LSMT,其实也有很多个变种,其中比较有名的是Jeff Dean写的Leveldb,它在LSMT的基础上做了一些改动,进一步提升了性能,相关的内容我们放到下篇文章。

今天的文章就是这些,如果觉得有所收获,请顺手点个关注或者转发吧,你们的举手之劳对我来说很重要。

这篇关于分布式——吞吐量巨强、Hbase的承载者 LSMT的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/832911

相关文章

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作

Redis分布式锁使用及说明

《Redis分布式锁使用及说明》本文总结了Redis和Zookeeper在高可用性和高一致性场景下的应用,并详细介绍了Redis的分布式锁实现方式,包括使用Lua脚本和续期机制,最后,提到了RedLo... 目录Redis分布式锁加锁方式怎么会解错锁?举个小案例吧解锁方式续期总结Redis分布式锁如果追求

集中式版本控制与分布式版本控制——Git 学习笔记01

什么是版本控制 如果你用 Microsoft Word 写过东西,那你八成会有这样的经历: 想删除一段文字,又怕将来这段文字有用,怎么办呢?有一个办法,先把当前文件“另存为”一个文件,然后继续改,改到某个程度,再“另存为”一个文件。就这样改着、存着……最后你的 Word 文档变成了这样: 过了几天,你想找回被删除的文字,但是已经记不清保存在哪个文件了,只能挨个去找。真麻烦,眼睛都花了。看

开源分布式数据库中间件

转自:https://www.csdn.net/article/2015-07-16/2825228 MyCat:开源分布式数据库中间件 为什么需要MyCat? 虽然云计算时代,传统数据库存在着先天性的弊端,但是NoSQL数据库又无法将其替代。如果传统数据易于扩展,可切分,就可以避免单机(单库)的性能缺陷。 MyCat的目标就是:低成本地将现有的单机数据库和应用平滑迁移到“云”端

laravel框架实现redis分布式集群原理

在app/config/database.php中配置如下: 'redis' => array('cluster' => true,'default' => array('host' => '172.21.107.247','port' => 6379,),'redis1' => array('host' => '172.21.107.248','port' => 6379,),) 其中cl

基于MySQL实现的分布式锁

概述 在单机时代,虽然不需要分布式锁,但也面临过类似的问题,只不过在单机的情况下,如果有多个线程要同时访问某个共享资源的时候,我们可以采用线程间加锁的机制,即当某个线程获取到这个资源后,就立即对这个资源进行加锁,当使用完资源之后,再解锁,其它线程就可以接着使用了。例如,在JAVA中,甚至专门提供了一些处理锁机制的一些API(synchronize/Lock等)。 但是到了分布式系统的时代,这种

Kafka 分布式消息系统详细介绍

Kafka 分布式消息系统 一、Kafka 概述1.1 Kafka 定义1.2 Kafka 设计目标1.3 Kafka 特点 二、Kafka 架构设计2.1 基本架构2.2 Topic 和 Partition2.3 消费者和消费者组2.4 Replica 副本 三、Kafka 分布式集群搭建3.1 下载解压3.1.1 上传解压 3.2 修改 Kafka 配置文件3.2.1 修改zookeep

Hive和Hbase的区别

Hive 和 HBase 都是 Hadoop 生态系统中的重要组件,它们都能处理大规模数据,但各自有不同的适用场景和设计理念。以下是两者的主要区别: 1. 数据模型 Hive:Hive 类似于传统的关系型数据库 (RDBMS),以表格形式存储数据。它使用 SQL-like 语言 HiveQL 来查询和处理数据,数据通常是结构化或半结构化的。HBase:HBase 是一个 NoSQL 数据库,基

简单Hbase 分页方案

简单Hbase分页方案 网上大多数分页方案分为从服务端分页或者从客户端分页 服务端分页方式主要利用PageFilter过滤器,首先太复杂,其次针对集群的兼容性不是很好,作者利用服务端分页+客户端分页结合方式给出一种简单易行的中间方案。 1.利用PageFilter过滤器从服务端分页,过滤出所需要的最大条数, 注:作者认为大多数用户不会进行太深的翻页,假设pageSize=5,客户饭100页一共