c# 三元搜索 - 迭代与递归(Ternary Search)

2024-03-21 10:44

本文主要是介绍c# 三元搜索 - 迭代与递归(Ternary Search),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        计算机系统使用不同的方法来查找特定数据。有多种搜索算法,每种算法更适合特定情况。例如,二分搜索将信息分为两部分,而三元搜索则执行相同的操作,但分为三个相等的部分。值得注意的是,三元搜索仅对排序数据有效。在本文中,我们将揭开三元搜索的秘密——它是如何工作的,为什么它在某些情况下更快。无论您是编码专家还是刚刚起步,都准备好快速进入三元搜索的世界!
什么是三元搜索?
        三元搜索是一种搜索算法,用于查找排序数组中目标值的位置。它的工作原理是将数组分为三部分,而不是像二分搜索那样分为两部分。基本思想是通过将目标值与将数组分为三个相等部分的两个点上的元素进行比较来缩小搜索空间。
        mid1 = l + (rl)/3 
        mid2 = r – (rl)/3 
三元搜索的工作原理:
        这个概念涉及将数组分成三个相等的段,并确定关键元素(正在寻找的元素)位于哪个段。它的工作原理与二分搜索类似,不同之处在于通过将数组分为三部分而不是两部分来降低时间复杂度。

以下是三元搜索工作的分步说明:
1、初始化:
        从排序数组开始。
        设置两个指针left和right,最初指向数组的第一个和最后一个元素。
2、划分数组:
        计算两个中点mid1和mid2,将当前搜索空间分为三个大致相等的部分:
                mid1 = 左 + (右 – 左) / 3
                mid2 = 右 – (右 – 左) / 3
        该数组现在有效地分为[left, mid1]、(mid1, mid2 ) 和[mid2, right]。
3、与目标比较: .
        如果target等于mid1或mid2处的元素,则查找成功,并返回索引
        如果目标小于mid1处的元素,则将右指针更新为mid1 – 1。
        如果目标大于mid2处的元素,则将左指针更新为mid2 + 1。
        如果目标位于mid1和mid2的元素之间,则将左指针更新为mid1 + 1,将右指针更新为mid2 – 1。
4、重复或结论:
        使用缩小的搜索空间重复该过程,直到找到目标或搜索空间变空。
        如果搜索空间为空并且未找到目标,则返回一个值,指示目标不存在于数组中。
插图: 

三元搜索的递归实现:

// CSharp program to illustrate
// recursive approach to ternary search
using System;
 
class GFG {
 
    // Function to perform Ternary Search
    static int ternarySearch(int l, int r, int key, int[] ar)
    {
        if (r >= l) {
 
            // Find the mid1 and mid2
            int mid1 = l + (r - l) / 3;
            int mid2 = r - (r - l) / 3;
 
            // Check if key is present at any mid
            if (ar[mid1] == key) {
                return mid1;
            }
            if (ar[mid2] == key) {
                return mid2;
            }
 
            // Since key is not present at mid,
            // check in which region it is present
            // then repeat the Search operation
            // in that region
 
            if (key < ar[mid1]) {
 
                // The key lies in between l and mid1
                return ternarySearch(l, mid1 - 1, key, ar);
            }
            else if (key > ar[mid2]) {
 
                // The key lies in between mid2 and r
                return ternarySearch(mid2 + 1, r, key, ar);
            }
            else {
 
                // The key lies in between mid1 and mid2
                return ternarySearch(mid1 + 1, mid2 - 1, key, ar);
            }
        }
 
        // Key not found
        return -1;
    }
 
    // Driver code
    public static void Main()
    {
        int l, r, p, key;
 
        // Get the array
        // Sort the array if not sorted
        int[] ar = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 
        // Starting index
        l = 0;
 
        // end element index
        r = 9;
 
        // Checking for 5
 
        // Key to be searched in the array
        key = 5;
 
        // Search the key using ternarySearch
        p = ternarySearch(l, r, key, ar);
 
        // Print the result
        Console.WriteLine("Index of " + key + " is " + p);
 
        // Checking for 50
 
        // Key to be searched in the array
        key = 50;
 
        // Search the key using ternarySearch
        p = ternarySearch(l, r, key, ar);
 
        // Print the result
        Console.WriteLine("Index of " + key + " is " + p);
    }
}
 
// This code is contributed by Ryuga

输出
5 的指数为 4 
50 的指数为 -1

时间复杂度: O(2 * log 3 n)
辅助空间: O(log 3 n)

三元搜索的迭代方法: 

// C# program to illustrate the iterative
// approach to ternary search
using System;
 
public class GFG {
 
    // Function to perform Ternary Search
    static int ternarySearch(int l, int r,
                             int key, int[] ar)
 
    {
        while (r >= l) {
 
            // Find the mid1 and mid2
            int mid1 = l + (r - l) / 3;
            int mid2 = r - (r - l) / 3;
 
            // Check if key is present at any mid
            if (ar[mid1] == key) {
                return mid1;
            }
            if (ar[mid2] == key) {
                return mid2;
            }
 
            // Since key is not present at mid,
            // check in which region it is present
            // then repeat the Search operation
            // in that region
 
            if (key < ar[mid1]) {
 
                // The key lies in between l and mid1
                r = mid1 - 1;
            }
            else if (key > ar[mid2]) {
 
                // The key lies in between mid2 and r
                l = mid2 + 1;
            }
            else {
 
                // The key lies in between mid1 and mid2
                l = mid1 + 1;
                r = mid2 - 1;
            }
        }
 
        // Key not found
        return -1;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int l, r, p, key;
 
        // Get the array
        // Sort the array if not sorted
        int[] ar = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 
        // Starting index
        l = 0;
 
        // end element index
        r = 9;
 
        // Checking for 5
 
        // Key to be searched in the array
        key = 5;
 
        // Search the key using ternarySearch
        p = ternarySearch(l, r, key, ar);
 
        // Print the result
        Console.WriteLine("Index of " + key + " is " + p);
 
        // Checking for 50
 
        // Key to be searched in the array
        key = 50;
 
        // Search the key using ternarySearch
        p = ternarySearch(l, r, key, ar);
 
        // Print the result
        Console.WriteLine("Index of " + key + " is " + p);
    }
}
 
// This code has been contributed by 29AjayKumar 

输出
5 的指数为 4 
50 的指数为 -1

时间复杂度: O(2 * log 3 n),其中 n 是数组的大小。
辅助空间: O(1)

三元搜索的复杂度分析:
时间复杂度:
        最坏情况:O(log 3 N)
        平均情况: θ(log 3 N)
        最好的情况:Ω(1)
        辅助空间: O(1)

二元搜索与三元搜索:
        二分查找的时间复杂度低于三目查找,因为三目查找的比较次数比二分查找多得多。二分搜索用于查找单调函数的最大值/最小值,而三元搜索用于查找单峰函数的最大值/最小值。
        注意:我们也可以对单调函数使用三元搜索,但时间复杂度会比二分搜索稍高。
优点:
        三元搜索可以找到单峰函数的最大值/最小值,而二元搜索不适用。
        三元搜索的时间复杂度为O(2 * log 3 n),比线性搜索更高效,与二分搜索相当。
        非常适合优化问题。
缺点:
        三元搜索仅适用于有序列表或数组,不能用于无序或非线性数据集。
        与二元搜索相比,三元搜索需要更多时间来查找单调函数的最大值/最小值。

何时使用三元搜索:
        当您有一个大型有序数组或列表并且需要查找特定值的位置时。
        当您需要找到函数的最大值或最小值时。
        当您需要在双调序列中找到双调点时。
        当您必须计算二次表达式时
概括:
        三元搜索是一种分治算法,用于查找给定数组或列表中特定值的位置。
        它的工作原理是将数组分为三部分,并对适当的部分递归地执行搜索操作,直到找到所需的元素。 
        该算法的时间复杂度为 O(2 * log 3 n),比线性搜索更有效,但比二分搜索等其他搜索算法不太常用。 
        需要注意的是,要使三元搜索正常工作,要搜索的数组必须进行排序。 

这篇关于c# 三元搜索 - 迭代与递归(Ternary Search)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/832457

相关文章

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

C#实现添加/替换/提取或删除Excel中的图片

《C#实现添加/替换/提取或删除Excel中的图片》在Excel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更加美观,下面我们来看看如何在C#中实现添加/替换/提取或删除E... 在Excandroidel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

c# checked和unchecked关键字的使用

《c#checked和unchecked关键字的使用》C#中的checked关键字用于启用整数运算的溢出检查,可以捕获并抛出System.OverflowException异常,而unchecked... 目录在 C# 中,checked 关键字用于启用整数运算的溢出检查。默认情况下,C# 的整数运算不会自

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如