毕业设计——Springboot集成+Spark实现电影、电视剧、商品的猜你喜欢推荐算法

本文主要是介绍毕业设计——Springboot集成+Spark实现电影、电视剧、商品的猜你喜欢推荐算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好呀,我是胡广,感谢大家收看我的博客,今天给大家带来的是一个众所周知的推荐系统的小demo,废话不多说,上才艺!!!

首先简单的看一下项目结构,很简单。

你得会创建SpringBoot项目

详细教程走这个链接,写得非常详细了

IDEA 如何快速创建 Springboot 项目icon-default.png?t=N7T8https://blog.csdn.net/sunnyzyq/article/details/108666480

1.SparkApplication:SpringBoot的启动类

package com.study;import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;@SpringBootApplication
public class SparkApplication {public static void main(String[] args) {SpringApplication.run(SparkApplication.class, args);}}

2.As类:主要实现推荐逻辑代码,我这里写得是测试的数据,如果想运用到项目当中还得从数据库获取到数据再进行spark的推荐运算哦!

其中有一段这么个代码,这是获取的本地文件的电影或电视剧的数据,这个txt文件我也会给大家放在下边分享的文件链接里!

JavaRDD<String> lines = jsc.textFile("D:\\NirvanaRebirth\\study\\spark\\recommend.txt");

给大家解释一下这个数据的格式,看到第一行是1,1,5

1(代表用户编号),1(代表电视剧或电影、商品编号),5(代表编号为1的用户给编号为1的电视剧的评分) 

 

package com.study;import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.mllib.recommendation.ALS;
import org.apache.spark.mllib.recommendation.MatrixFactorizationModel;
import org.apache.spark.mllib.recommendation.Rating;
import org.apache.spark.rdd.RDD;
import scala.Tuple2;import java.util.ArrayList;
import java.util.List;public class As {public static void main(String[] args) {List<String> list=new ArrayList<String>();list.add("1,6,0");list.add("2,1,4.5");list.add("2,2,9.9");list.add("3,3,5.0");list.add("3,4,2.0");list.add("3,5,5.0");list.add("3,6,9.9");list.add("4,2,9.9");list.add("4,5,0");list.add("4,6,0");list.add("5,2,9.9");list.add("5,3,9.9");list.add("5,4,9.9");list.add("3,10,5.0");list.add("3,11,2.0");list.add("3,12,5.0");list.add("3,12,9.9");list.add("4,14,9.9");list.add("4,15,0");list.add("4,16,7.0");list.add("5,17,9.9");list.add("5,18,9.9");list.add("5,19,6.9");//        JavaRDD<String> temp=sc.parallelize(list);//上述方式等价于
//        JavaRDD<String> temp2=sc.parallelize(Arrays.asList("a","b","c"));System.out.println("牛逼牛逼");SparkConf conf = new SparkConf().setAppName("als").setMaster("local[5]");JavaSparkContext jsc = new JavaSparkContext(conf);JavaRDD<String> lines = jsc.textFile("D:\\NirvanaRebirth\\study\\spark\\recommend.txt");
//        JavaRDD<String> lines = jsc.parallelize(list);// 映射RDD<Rating> ratingRDD = lines.map(new Function<String, Rating>() {public Rating call(String line) throws Exception {String[] arr = line.split(",");return new Rating(new Integer(arr[0]), new Integer(arr[1]), Double.parseDouble(arr[2]));}}).rdd();MatrixFactorizationModel model = ALS.train(ratingRDD, 10, 10);// 通过原始数据进行测试JavaPairRDD<Integer, Integer> testJPRDD = ratingRDD.toJavaRDD().mapToPair(new PairFunction<Rating, Integer, Integer>() {public Tuple2<Integer, Integer> call(Rating rating) throws Exception {return new Tuple2<Integer, Integer>(rating.user(), rating.product());}});// 对原始数据进行推荐值预测JavaRDD<Rating> predict = model.predict(testJPRDD);System.out.println("原始数据测试结果为:");predict.foreach(new VoidFunction<Rating>() {public void call(Rating rating) throws Exception {System.out.println("UID:" + rating.user() + ",PID:" + rating.product() + ",SCORE:" + rating.rating());}});// 向指定id的用户推荐n件商品Rating[] predictProducts = model.recommendProducts(2, 8);System.out.println("\r\n向指定id的用户推荐n件商品");for(Rating r1:predictProducts){System.out.println("UID:" + r1.user() + ",PID:" + r1.product() + ",SCORE:" + r1.rating());}// 向指定id的商品推荐给n给用户Rating[] predictUsers = model.recommendUsers(2, 4);System.out.println("\r\n向指定id的商品推荐给n给用户");for(Rating r1:predictProducts){System.out.println("UID:" + r1.user() + ",PID:" + r1.product() + ",SCORE:" + r1.rating());}// 向所有用户推荐N个商品RDD<Tuple2<Object, Rating[]>> predictProductsForUsers = model.recommendProductsForUsers(3);System.out.println("\r\n******向所有用户推荐N个商品******");predictProductsForUsers.toJavaRDD().foreach(new VoidFunction<Tuple2<Object, Rating[]>>() {public void call(Tuple2<Object, Rating[]> tuple2) throws Exception {System.out.println("以下为向id为:" + tuple2._1 + "的用户推荐的商品:");for(Rating r1:tuple2._2){System.out.println("UID:" + r1.user() + ",PID:" + r1.product() + ",SCORE:" + r1.rating());}}});// 将所有商品推荐给n个用户RDD<Tuple2<Object, Rating[]>> predictUsersForProducts = model.recommendUsersForProducts(2);System.out.println("\r\n******将所有商品推荐给n个用户******");predictUsersForProducts.toJavaRDD().foreach(new VoidFunction<Tuple2<Object, Rating[]>>() {public void call(Tuple2<Object, Rating[]> tuple2) throws Exception {System.out.println("以下为向id为:" + tuple2._1 + "的商品推荐的用户:");for(Rating r1:tuple2._2){System.out.println("UID:" + r1.user() + ",PID:" + r1.product() + ",SCORE:" + r1.rating());}}});}
}

3.pom.xml:maven的依赖项目

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.6.2</version><relativePath/> <!-- lookup parent from repository --></parent><groupId>com.study</groupId><artifactId>spark</artifactId><version>0.0.1-SNAPSHOT</version><name>spark</name><description>Demo project for Spring Boot</description><properties><java.version>1.8</java.version></properties><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><scope>test</scope></dependency><!--Spark 依赖--><!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core_2.11 --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.11</artifactId><version>2.1.0</version></dependency><!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql_2.11 --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql_2.11</artifactId><version>2.3.1</version></dependency><!-- https://mvnrepository.com/artifact/org.apache.spark/spark-mllib --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-mllib_2.11</artifactId><version>2.1.0</version><scope>compile</scope></dependency><!--Guava 依赖--><dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>14.0.1</version></dependency><dependency><groupId>org.codehaus.janino</groupId><artifactId>janino</artifactId><version>3.0.8</version></dependency><!-- fix java.lang.ClassNotFoundException: org.codehaus.commons.compiler.UncheckedCompileException --><dependency><groupId>org.codehaus.janino</groupId><artifactId>commons-compiler</artifactId><version>2.7.8</version></dependency><dependency><groupId>io.netty</groupId><artifactId>netty-all</artifactId><version>4.1.17.Final</version></dependency><!-- https://mvnrepository.com/artifact/org.slf4j/log4j-over-slf4j --><!--Hadoop 依赖--><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.3.1</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>3.3.1</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-hdfs</artifactId><version>3.3.1</version></dependency></dependencies><build><plugins><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId></plugin></plugins></build></project>

简单的运行效果

向指定id的用户推荐n件商品

有需要到这个百度云盘连接下载就行

链接:https://pan.baidu.com/s/1dhsHqzxdfZngJLaCqxrAGg 提取码:oaadicon-default.png?t=N7T8https://pan.baidu.com/s/1dhsHqzxdfZngJLaCqxrAGg

好了,到这里就结束咯,是不是很简单呢?有啥不懂的或者有啥可改进的可以看下边添加我微信一起交流哦!微信:BitPlanet   需要毕业设计的小伙伴也可以联系,帝王般的服务你值得拥有

感谢观看

这篇关于毕业设计——Springboot集成+Spark实现电影、电视剧、商品的猜你喜欢推荐算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/832313

相关文章

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

SpringBoot整合liteflow的详细过程

《SpringBoot整合liteflow的详细过程》:本文主要介绍SpringBoot整合liteflow的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋...  liteflow 是什么? 能做什么?总之一句话:能帮你规范写代码逻辑 ,编排并解耦业务逻辑,代码