毕业设计——Springboot集成+Spark实现电影、电视剧、商品的猜你喜欢推荐算法

本文主要是介绍毕业设计——Springboot集成+Spark实现电影、电视剧、商品的猜你喜欢推荐算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好呀,我是胡广,感谢大家收看我的博客,今天给大家带来的是一个众所周知的推荐系统的小demo,废话不多说,上才艺!!!

首先简单的看一下项目结构,很简单。

你得会创建SpringBoot项目

详细教程走这个链接,写得非常详细了

IDEA 如何快速创建 Springboot 项目icon-default.png?t=N7T8https://blog.csdn.net/sunnyzyq/article/details/108666480

1.SparkApplication:SpringBoot的启动类

package com.study;import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;@SpringBootApplication
public class SparkApplication {public static void main(String[] args) {SpringApplication.run(SparkApplication.class, args);}}

2.As类:主要实现推荐逻辑代码,我这里写得是测试的数据,如果想运用到项目当中还得从数据库获取到数据再进行spark的推荐运算哦!

其中有一段这么个代码,这是获取的本地文件的电影或电视剧的数据,这个txt文件我也会给大家放在下边分享的文件链接里!

JavaRDD<String> lines = jsc.textFile("D:\\NirvanaRebirth\\study\\spark\\recommend.txt");

给大家解释一下这个数据的格式,看到第一行是1,1,5

1(代表用户编号),1(代表电视剧或电影、商品编号),5(代表编号为1的用户给编号为1的电视剧的评分) 

 

package com.study;import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.mllib.recommendation.ALS;
import org.apache.spark.mllib.recommendation.MatrixFactorizationModel;
import org.apache.spark.mllib.recommendation.Rating;
import org.apache.spark.rdd.RDD;
import scala.Tuple2;import java.util.ArrayList;
import java.util.List;public class As {public static void main(String[] args) {List<String> list=new ArrayList<String>();list.add("1,6,0");list.add("2,1,4.5");list.add("2,2,9.9");list.add("3,3,5.0");list.add("3,4,2.0");list.add("3,5,5.0");list.add("3,6,9.9");list.add("4,2,9.9");list.add("4,5,0");list.add("4,6,0");list.add("5,2,9.9");list.add("5,3,9.9");list.add("5,4,9.9");list.add("3,10,5.0");list.add("3,11,2.0");list.add("3,12,5.0");list.add("3,12,9.9");list.add("4,14,9.9");list.add("4,15,0");list.add("4,16,7.0");list.add("5,17,9.9");list.add("5,18,9.9");list.add("5,19,6.9");//        JavaRDD<String> temp=sc.parallelize(list);//上述方式等价于
//        JavaRDD<String> temp2=sc.parallelize(Arrays.asList("a","b","c"));System.out.println("牛逼牛逼");SparkConf conf = new SparkConf().setAppName("als").setMaster("local[5]");JavaSparkContext jsc = new JavaSparkContext(conf);JavaRDD<String> lines = jsc.textFile("D:\\NirvanaRebirth\\study\\spark\\recommend.txt");
//        JavaRDD<String> lines = jsc.parallelize(list);// 映射RDD<Rating> ratingRDD = lines.map(new Function<String, Rating>() {public Rating call(String line) throws Exception {String[] arr = line.split(",");return new Rating(new Integer(arr[0]), new Integer(arr[1]), Double.parseDouble(arr[2]));}}).rdd();MatrixFactorizationModel model = ALS.train(ratingRDD, 10, 10);// 通过原始数据进行测试JavaPairRDD<Integer, Integer> testJPRDD = ratingRDD.toJavaRDD().mapToPair(new PairFunction<Rating, Integer, Integer>() {public Tuple2<Integer, Integer> call(Rating rating) throws Exception {return new Tuple2<Integer, Integer>(rating.user(), rating.product());}});// 对原始数据进行推荐值预测JavaRDD<Rating> predict = model.predict(testJPRDD);System.out.println("原始数据测试结果为:");predict.foreach(new VoidFunction<Rating>() {public void call(Rating rating) throws Exception {System.out.println("UID:" + rating.user() + ",PID:" + rating.product() + ",SCORE:" + rating.rating());}});// 向指定id的用户推荐n件商品Rating[] predictProducts = model.recommendProducts(2, 8);System.out.println("\r\n向指定id的用户推荐n件商品");for(Rating r1:predictProducts){System.out.println("UID:" + r1.user() + ",PID:" + r1.product() + ",SCORE:" + r1.rating());}// 向指定id的商品推荐给n给用户Rating[] predictUsers = model.recommendUsers(2, 4);System.out.println("\r\n向指定id的商品推荐给n给用户");for(Rating r1:predictProducts){System.out.println("UID:" + r1.user() + ",PID:" + r1.product() + ",SCORE:" + r1.rating());}// 向所有用户推荐N个商品RDD<Tuple2<Object, Rating[]>> predictProductsForUsers = model.recommendProductsForUsers(3);System.out.println("\r\n******向所有用户推荐N个商品******");predictProductsForUsers.toJavaRDD().foreach(new VoidFunction<Tuple2<Object, Rating[]>>() {public void call(Tuple2<Object, Rating[]> tuple2) throws Exception {System.out.println("以下为向id为:" + tuple2._1 + "的用户推荐的商品:");for(Rating r1:tuple2._2){System.out.println("UID:" + r1.user() + ",PID:" + r1.product() + ",SCORE:" + r1.rating());}}});// 将所有商品推荐给n个用户RDD<Tuple2<Object, Rating[]>> predictUsersForProducts = model.recommendUsersForProducts(2);System.out.println("\r\n******将所有商品推荐给n个用户******");predictUsersForProducts.toJavaRDD().foreach(new VoidFunction<Tuple2<Object, Rating[]>>() {public void call(Tuple2<Object, Rating[]> tuple2) throws Exception {System.out.println("以下为向id为:" + tuple2._1 + "的商品推荐的用户:");for(Rating r1:tuple2._2){System.out.println("UID:" + r1.user() + ",PID:" + r1.product() + ",SCORE:" + r1.rating());}}});}
}

3.pom.xml:maven的依赖项目

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.6.2</version><relativePath/> <!-- lookup parent from repository --></parent><groupId>com.study</groupId><artifactId>spark</artifactId><version>0.0.1-SNAPSHOT</version><name>spark</name><description>Demo project for Spring Boot</description><properties><java.version>1.8</java.version></properties><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><scope>test</scope></dependency><!--Spark 依赖--><!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core_2.11 --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.11</artifactId><version>2.1.0</version></dependency><!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql_2.11 --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql_2.11</artifactId><version>2.3.1</version></dependency><!-- https://mvnrepository.com/artifact/org.apache.spark/spark-mllib --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-mllib_2.11</artifactId><version>2.1.0</version><scope>compile</scope></dependency><!--Guava 依赖--><dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>14.0.1</version></dependency><dependency><groupId>org.codehaus.janino</groupId><artifactId>janino</artifactId><version>3.0.8</version></dependency><!-- fix java.lang.ClassNotFoundException: org.codehaus.commons.compiler.UncheckedCompileException --><dependency><groupId>org.codehaus.janino</groupId><artifactId>commons-compiler</artifactId><version>2.7.8</version></dependency><dependency><groupId>io.netty</groupId><artifactId>netty-all</artifactId><version>4.1.17.Final</version></dependency><!-- https://mvnrepository.com/artifact/org.slf4j/log4j-over-slf4j --><!--Hadoop 依赖--><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.3.1</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>3.3.1</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-hdfs</artifactId><version>3.3.1</version></dependency></dependencies><build><plugins><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId></plugin></plugins></build></project>

简单的运行效果

向指定id的用户推荐n件商品

有需要到这个百度云盘连接下载就行

链接:https://pan.baidu.com/s/1dhsHqzxdfZngJLaCqxrAGg 提取码:oaadicon-default.png?t=N7T8https://pan.baidu.com/s/1dhsHqzxdfZngJLaCqxrAGg

好了,到这里就结束咯,是不是很简单呢?有啥不懂的或者有啥可改进的可以看下边添加我微信一起交流哦!微信:BitPlanet   需要毕业设计的小伙伴也可以联系,帝王般的服务你值得拥有

感谢观看

这篇关于毕业设计——Springboot集成+Spark实现电影、电视剧、商品的猜你喜欢推荐算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/832313

相关文章

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾