数学建模(熵权法 python代码 例子)

2024-03-21 08:04

本文主要是介绍数学建模(熵权法 python代码 例子),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

介绍: 

模板:

例子:择偶

极小型指标转化为极大型(正向化):

中间型指标转为极大型(正向化):

区间型指标转为极大型(正向化):

标准化处理:

公式:

熵权:

公式:

​​​完整代码:

结果:

介绍: 

熵权法是一种多属性决策方法,用于确定各个属性在决策中的重要程度。该方法的核心思想是通过计算属性的熵值,来评估属性的信息量和不确定性,进而确定属性的权重。

熵是信息论中的概念,表示一个随机变量的不确定性。在决策中,一个属性的熵越大,说明该属性对决策的贡献越大,因为它包含了更多的信息。熵权法通过计算属性的熵,然后将每个属性的熵除以总的熵,得到每个属性的权重。

具体步骤如下:

  1. 收集决策所涉及的属性数据。
  2. 计算每个属性的熵值,使用熵的计算公式:熵 = -Σ(p*log2(p)),其中p表示属性的概率。
  3. 计算所有属性的熵之和,得到总的熵。
  4. 计算每个属性的权重,使用该属性的熵除以总的熵。
  5. 最后可以根据属性的权重,进行决策或排序。

熵权法在多属性决策中具有一定的优势,能够考虑到不同属性的权重,提高决策的准确性和可靠性。但是,在实际应用中,需要注意属性数据的准确性和合理性,以及熵的计算方法的选择等问题。

 模板:

import numpy as np# 定义计算熵的函数
def entropy(data):# 计算每个属性的概率prob = np.array(data) / np.sum(data)# 计算熵entropy = -np.sum(prob * np.log2(prob))return entropy# 定义熵权法函数
def entropy_weight(data):# 计算每个属性的熵entropies = [entropy(column) for column in data.T]# 计算总的熵total_entropy = np.sum(entropies)# 计算每个属性的权重weights = [entropy / total_entropy for entropy in entropies]return weights# 示例数据
data = np.array([[10, 20, 30, 40], [40, 30, 20, 10]])# 计算权重
weights = entropy_weight(data)
print("属性权重:", weights)

例子:择偶

 极小型指标转化为极大型(正向化):

   # 公式:max-x if ('Negative' in name) == True:max0 = data_nor[columns_name[i + 1]].max()#取最大值data_nor[columns_name[i + 1]] = (max0 - data_nor[columns_name[i + 1]])  # 正向化# print(data_nor[columns_name[i+1]])

 中间型指标转为极大型(正向化):

 # 中间型指标正向化 公式:M=max{|xi-best|}  xi=1-|xi-best|/Mif ('Moderate' in name) == True:print("输入最佳值:")max = data_nor[columns_name[i + 1]].max()min = data_nor[columns_name[i + 1]].min()best=input()M=0for j in data_nor[columns_name[i + 1]]:if(M<abs(j-int(best))):M=(abs(j-int(best)))data_nor[columns_name[i + 1]]=1-(abs(data_nor[columns_name[i + 1]]-int(best))/M)#print(data_nor[columns_name[i + 1]])

 区间型指标转为极大型(正向化):

# 区间型指标正向化if('Section' in name)==True:print()print("输入区间:")a=input()b=input()a=int(a)b=int(b)max = data_nor[columns_name[i + 1]].max()min= data_nor[columns_name[i + 1]].min()if(a-min>max-b):M=a-minelse:M=max-b#print(data_nor[columns_name[i + 1]][0])cnt=0for j in data_nor[columns_name[i + 1]]:if(j<int(a)):data_nor[columns_name[i + 1]][cnt]=1-(a-j)/Melif (int(a)<= j <=int(b)):data_nor[columns_name[i + 1]][cnt]=1elif (j>b):data_nor[columns_name[i + 1]][cnt]=1-(j-b)/M#print(data_nor[columns_name[i + 1]][cnt])cnt+=1#print(data_nor[columns_name[i + 1]])'''公式:
M = max{a-min{xi},max{xi}-b}  xi<a,则xi=1-(a-xi)/M; a<=xi<=b,则xi=1; xi>b,则1-(xi-b)/M
'''

标准化处理:

公式:

def normalization(data_nor):data_nors = data_nor.valuesdata_nors = np.delete(data_nors, 0, axis=1)#去掉第一行squere_A = data_nors * data_nors#矩阵相乘# print(squere_A)sum_A = np.sum(squere_A, axis=0)#按列求和sum_A = sum_A.astype(float)stand_A = np.sqrt(sum_A)#平方根columns_name = data_nor.columns.valuescnt=0for i in columns_name[1:]:#print(data_nor[i])data_nor[i]=data_nor[i]/stand_A[cnt]cnt+=1#print(data_nor)return data_nor

熵权:

公式:

# 定义计算熵权方法
def entropy_weight(data_nor):columns_name = data_nor.columns.valuesn = data_nor.shape[0]E = []for i in columns_name[1:]:# 计算信息熵# print(i)data_nor[i] = data_nor[i] / sum(data_nor[i])data_nor[i] = data_nor[i] * np.log(data_nor[i])data_nor[i] = data_nor[i].where(data_nor[i].notnull(), 0)# print(data_nor[i])Ei = (-1) / (np.log(n)) * sum(data_nor[i])E.append(Ei)# print(E)# 计算权重W = []for i in E:wi = (1 - i) / ((len(columns_name) - 1) - sum(E))W.append(wi)# print(W)return W

 ​​​​完整代码:

#coding=gbk
import pandas as pd
import numpy as np
import re
import warnings# 定义文件读取方法
def read_data(file):file_path = fileraw_data = pd.read_excel(file_path, header=0)# print(raw_data)return raw_data# 定义数据正向化
def data_normalization(data):data_nor = data.copy()columns_name = data_nor.columns.values#print(columns_name)for i in range((len(columns_name) - 1)):name = columns_name[i + 1]print("输入这一类数据类型(Positive、Negative、Moderate、Section:)")name=input()# 极小型指标正向化if ('Negative' in name) == True:max0 = data_nor[columns_name[i + 1]].max()#取最大值data_nor[columns_name[i + 1]] = (max0 - data_nor[columns_name[i + 1]])  # 正向化# print(data_nor[columns_name[i+1]])# 中间型指标正向化if ('Moderate' in name) == True:print("输入最佳值:")max = data_nor[columns_name[i + 1]].max()#取最大值min = data_nor[columns_name[i + 1]].min()#取最小值best=input()M=0for j in data_nor[columns_name[i + 1]]:if(M<abs(j-int(best))):M=(abs(j-int(best)))data_nor[columns_name[i + 1]]=1-(abs(data_nor[columns_name[i + 1]]-int(best))/M)#print(data_nor[columns_name[i + 1]])# 区间型指标正向化if('Section' in name)==True:print("输入区间:")a=input()b=input()a=int(a)b=int(b)max = data_nor[columns_name[i + 1]].max()min= data_nor[columns_name[i + 1]].min()if(a-min>max-b):M=a-minelse:M=max-b#print(data_nor[columns_name[i + 1]][0])cnt=0for j in data_nor[columns_name[i + 1]]:if(j<int(a)):data_nor[columns_name[i + 1]][cnt]=1-(a-j)/Melif (int(a)<= j <=int(b)):data_nor[columns_name[i + 1]][cnt]=1elif (j>b):data_nor[columns_name[i + 1]][cnt]=1-(j-b)/Mcnt+=1#print(data_nor[columns_name[i + 1]])# print(data_nor)return data_nordef normalization(data_nor):data_nors = data_nor.valuesdata_nors = np.delete(data_nors, 0, axis=1)squere_A = data_nors * data_nors#矩阵相乘# print(squere_A)sum_A = np.sum(squere_A, axis=0)#按列求和sum_A = sum_A.astype(float)stand_A = np.sqrt(sum_A)#开平方columns_name = data_nor.columns.valuescnt=0for i in columns_name[1:]:data_nor[i]=data_nor[i]/stand_A[cnt]#每个元素除以相对应的平方根cnt+=1#print(data_nor)return data_nor# 定义计算熵权方法
def entropy_weight(data_nor):columns_name = data_nor.columns.valuesn = data_nor.shape[0]E = []for i in columns_name[1:]:# 计算信息熵# print(i)data_nor[i] = data_nor[i] / sum(data_nor[i])data_nor[i] = data_nor[i] * np.log(data_nor[i])data_nor[i] = data_nor[i].where(data_nor[i].notnull(), 0)# print(data_nor[i])Ei = (-1) / (np.log(n)) * sum(data_nor[i])E.append(Ei)# print(E)# 计算权重W = []for i in E:wi = (1 - i) / ((len(columns_name) - 1) - sum(E))W.append(wi)# print(W)return W# 计算得分
def entropy_score(data, w):data_s = data.copy()columns_name = data_s.columns.valuesfor i in range((len(columns_name) - 1)):name = columns_name[i + 1]data_s[name] = data_s[name] * w[i]return data_sif __name__ == "__main__":file = 'filepath'  # 声明数据文件地址data = read_data(file)  # 读取数据文件data_nor = data_normalization(data)  # 数据正向化,生成后的数据data_norprint("\n正向化后的数据:")print(data_nor)data_nor=normalization(data_nor)print("\n标准化后的数据:")print(data_nor)W = entropy_weight(data_nor)  # 计算熵权权重data_s = entropy_score(data, W)  # 计算赋权后的得分,使用原数据计算#data_nor_s = entropy_score(data_nor, W)print("\n权值:",W)print("\n赋权后的得分:")print(data_s)#print(data_nor_s)

结果: 

 

这篇关于数学建模(熵权法 python代码 例子)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/832146

相关文章

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示