R语言检验独立性:卡方检验(Chi-square test)和费舍尔精确检验分析案例报告

本文主要是介绍R语言检验独立性:卡方检验(Chi-square test)和费舍尔精确检验分析案例报告,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

统计测试最常见的领域之一是测试列联表中的独立性。在这篇文章中,我将展示如何计算列联表,我将在列联表中引入两个流行的测试:卡方检验和Fisher精确检验。

什么是列联表?

列联表提供关于两个分类变量的测量的整数计数。最简单的列联表是一个2 × 22×2 频率表,由两个变量产生,每个变量有两个级别:

组/观察观察1观察2
第1组ñ1 ,1ñ1,1ñ1 ,2ñ1,2
第2组ñ2 ,1ñ2,1ñ2 ,2ñ2,2

给定这样一个表格,问题是第1组是否表现出与第2组相比的观测频率。这些组代表因变量,因为它们依赖于自变量的观察。请注意,列联表必须是一种常见的误解2 × 22×2; 它们可以具有任意数量的维度,具体取决于变量显示的级别数。尽管如此,应避免对具有多个维度的列联表进行统计检验,因为除其他原因外,解释结果将具有挑战性。

 数据集

要研究列联表的测试,我们将使用warpbreaks数据集:

<span style="color:#000000"><span style="color:#000000"><code>data(warpbreaks)
head(warpbreaks)</code></span></span>
##   breaks wool tension
## 1     26    A       L
## 2     30    A       L
## 3     54    A       L
## 4     25    A       L
## 5     70    A       L
## 6     52    A       L

这是一个包含来自纺织行业的三个变量的数据集:中断描述了经线中断的次数,羊毛∈ { A ,B }羊毛∈{一个,乙} 描述了经过测试的羊毛类型 张力∈ { L ,M,H}张力∈{大号,中号,H}给出了施加在螺纹上的张力(低,中或高)。数据集中的每一行表示单个织机的测量值。为了解释不同织机的可变性,对羊毛张力的每种组合进行了9次测量,数据集总共包含9 ⋅ 2 ⋅ 3 = 549⋅2⋅3=54 观察结果。

分析目标

我们想确定一种类型的羊毛在不同程度的紧张情况下是否优于另一种羊毛。为了研究我们是否可以找到一些差异的证据,让我们来看看数据:

为了研究链断裂数的差异,让我们可视化数据:

从图中我们可以看出,总体而言,羊毛B与较少的断裂相关联。羊毛A似乎特别低劣,因为低张力。

转换为列联表

为了获得列联表,我们首先需要总结两种类型的羊毛和三种类型的张力的不同织机的断裂。

##   wool tension breaks
## 1    A       L    401
## 2    A       M    216
## 3    A       H    221
## 4    B       L    254
## 5    B       M    259
## 6    B       H    169

然后我们使用xtabs(发音为交叉表)函数来生成列联表:

##     tension
## wool   L   M   H
##    A 401 216 221
##    B 254 259 169

现在,df我们有了应用统计测试所需的结构。

统计检验

用于确定来自不同组的测量值是否独立的两种最常见的测试是卡方检验(χ2χ2测试)和费舍尔的精确测试。请注意,如果测量结果配对,则应使用McNemar测试(例如,可以识别单个织机)。

皮尔逊的卡方检验

该 χ2χ2test是一种非参数测试,可应用于具有各种维度的列联表。测试的名称源自χ2χ2分布,即独立标准正态变量的平方分布。这是测试统计的分布χ2χ2 测试,由卡方值的总和定义 χ2我,jχ一世,Ĵ2 对于所有细胞对 我,j一世,Ĵ 由细胞观察值之间的差异引起的 Ø我,jØ一世,Ĵ 和期望值 Ë我,jË一世,Ĵ,归一化 Ë我,jË一世,Ĵ:

 

&Sigma; χ2我,j哪里χ2我,j= (O我,j- E.我,j)2Ë我,jΣχ一世,Ĵ2哪里χ一世,Ĵ2=(Ø一世,Ĵ- Ë一世,Ĵ)2Ë一世,Ĵ

 

这里的直觉是 &Sigma; χ2我,jΣχ一世,Ĵ2 如果观测值明显偏离预期值,则会很大 &Sigma; χ2我,jΣχ一世,Ĵ2如果观测值与预期值很好地吻合,则接近于零。通过执行测试

## [1] 7.900708e-07

由于p值小于0.05,我们可以在5%显着性水平上拒绝测试的零假设(断裂的频率独立于羊毛)。根据df一个人的条目,然后可以声称羊毛B比羊毛A明显更好(相对于经纱断裂)。

调查Pearson残差

另一种方法是考虑测试的卡方值。该chisq.test函数提供卡方值的Pearson残差(根),即χ我,jχ一世,Ĵ。与由平方差异产生的卡方值相反,残差不是平方的。因此,残差反映了观测值超过预期值(正值)或低于预期值(负值)的程度。在我们的数据集中,正值表示比预期更多的链断裂,而负值表示更少的断点:

##     tension
## wool          L          M          H
##    A  2.0990516 -2.8348433  0.4082867
##    B -2.3267672  3.1423813 -0.4525797

残留物表明,与羊毛A相比,羊毛B的低张力和高张力断裂比预期的要少。然而,对于中等张力,羊毛B比预期的断裂更多。再次,我们发现,整体羊毛B优于羊毛A.残留物的值也表明羊毛B对于低张力(残差为2.1),高张力(0.41)和中等张力严重( - 2.8)。然而,残留物有助于我们识别羊毛B的问题:它对中等张力的表现不佳。这将如何促进进一步发展?为了获得在所有张力水平下表现良好的羊毛,我们需要专注于改善羊毛B的中等张力。为此,我们可以考虑使羊毛A在中等张力下表现更好的特性。

费舍尔的确切测试

Fisher的精确测试是用于测试独立性的非参数测试,通常仅用于测试 2 × 22×2列联表。作为精确显着性检验,Fisher检验符合所有假设,在此基础上定义检验统计量的分布。实际上,这意味着错误拒绝率等于测试的显着性水平,对于近似测试,例如χ2χ2测试。简而言之,Fisher的精确测试依赖于使用二项式系数根据超几何分布计算p值,即通过

 

p = (n1 ,1+ n1 ,2ñ1 ,1)(n2 ,1+ n2 ,2ñ2 ,1)(n1 ,1+ n1 ,2+ n2 ,1+ n2 ,2ñ1 ,1+ n2 ,1)p=(ñ1,1+ñ1,2ñ1,1)(ñ2,1+ñ2,2ñ2,1)(ñ1,1+ñ1,2+ñ2,1+ñ2,2ñ1,1+ñ2,1)

 

由于计算的因子可能变得非常大,Fisher精确检验可能不适用于大样本量。

请注意,无法指定测试的替代方法,df因为优势比(表示效果大小)仅定义为2 × 22×2 矩阵:

 

O R = n1 ,1ñ1 ,2/ n2 ,1ñ2 ,2Ø[R=ñ1,1ñ1,2/ñ2,1ñ2,2

 

我们仍然可以执行Fisher精确检验以获得p值:

## [1] 8.162421e-07

得到的p值类似于从中获得的p值 χ2χ2 测试并得出相同的结论:我们可以拒绝零假设,即羊毛的类型与不同应力水平下观察到的断裂次数无关。

转换为2乘2矩阵

为了指定备选假设并获得优势比,我们可以计算三者的测试 2 × 22×2可以构造的矩阵df

由于替代方案设置得更大,这意味着我们正在进行单尾测试,其中另一种假设是羊毛A与羊毛B的断裂次数相关(即我们预期O R > 1Ø[R>1)。通过执行测试2 × 22×2表格,我们也获得了解释性:我们现在可以区分羊毛不同的具体条件。然而,在解释p值之前,我们需要纠正多个假设检验。在这种情况下,我们进行了三次测试。在这里,我们只需将0.05的初始显着性水平调整为0.053= 0.01 6¯¯¯0.053=0.016¯根据Bonferroni方法。根据调整后的阈值,以下测试显着:

## [1] "L vs others"

这一发现表明,如果应力较轻,羊毛B仅显着优于羊毛A. 请注意,我们也可以采用构建方法2 × 22×2 矩阵 χ2χ2测试。随着χ2χ2 然而,测试并不是必要的,因为我们的分析基于残差。

摘要:卡方对费舍尔的精确检验

以下是两个测试的属性摘要:

标准卡方检验费舍尔的确切测试
最小样本量
准确性近似精确
列联表任意维度通常为2x2
解释皮尔逊残差优势比

通常,Fisher精确检验优于卡方检验,因为它是一种精确检验。如果单个细胞的观察结果很少(例如小于10),则应特别避免卡方检验。由于Fisher的精确检验对于大样本量和精确度可能在计算上是不可行的χ2χ2 测试随着样本数量的增加而增加 χ2χ2在这种情况下,测试是合适的替代品。另一个优点了χ2χ2 测试是它更适合维数超过的列联表 2 × 22×2。

 

有问题吗?欢迎留言

这篇关于R语言检验独立性:卡方检验(Chi-square test)和费舍尔精确检验分析案例报告的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/831620

相关文章

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

客户案例:安全海外中继助力知名家电企业化解海外通邮困境

1、客户背景 广东格兰仕集团有限公司(以下简称“格兰仕”),成立于1978年,是中国家电行业的领军企业之一。作为全球最大的微波炉生产基地,格兰仕拥有多项国际领先的家电制造技术,连续多年位列中国家电出口前列。格兰仕不仅注重业务的全球拓展,更重视业务流程的高效与顺畅,以确保在国际舞台上的竞争力。 2、需求痛点 随着格兰仕全球化战略的深入实施,其海外业务快速增长,电子邮件成为了关键的沟通工具。

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

【区块链 + 人才服务】区块链集成开发平台 | FISCO BCOS应用案例

随着区块链技术的快速发展,越来越多的企业开始将其应用于实际业务中。然而,区块链技术的专业性使得其集成开发成为一项挑战。针对此,广东中创智慧科技有限公司基于国产开源联盟链 FISCO BCOS 推出了区块链集成开发平台。该平台基于区块链技术,提供一套全面的区块链开发工具和开发环境,支持开发者快速开发和部署区块链应用。此外,该平台还可以提供一套全面的区块链开发教程和文档,帮助开发者快速上手区块链开发。