算法沉淀——贪心算法四(leetcode真题剖析)

2024-03-20 23:20

本文主要是介绍算法沉淀——贪心算法四(leetcode真题剖析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

算法沉淀——贪心算法四

  • 01.最长回文串
  • 02.增减字符串匹配
  • 03.分发饼干
  • 04.最优除法

01.最长回文串

题目链接:https://leetcode.cn/problems/longest-palindrome/

给定一个包含大写字母和小写字母的字符串 s ,返回 通过这些字母构造成的 最长的回文串

在构造过程中,请注意 区分大小写 。比如 "Aa" 不能当做一个回文字符串。

示例 1:

输入:s = "abccccdd"
输出:7
解释:
我们可以构造的最长的回文串是"dccaccd", 它的长度是 7。

示例 2:

输入:s = "a"
输出:1

示例 3:

输入:s = "aaaaaccc"
输出:7

提示:

  • 1 <= s.length <= 2000
  • s 只由小写 和/或 大写英文字母组成

思路

首先我们想到如果某个字符出现偶数次,那么它一定可以构成回文串,所以我们利用这个思想将所有字符的偶数个都计入回文串的个数中,若该个数不超过给出的字符串长度,那么我们可以再加上任意字符,即为最长的回文字符串。

代码

class Solution {
public:int longestPalindrome(string s) {int hash[128];int ret=0;for(auto ch:s) hash[ch]++;for(auto c:hash) ret+=c/2*2;return ret<s.size()?ret+1:ret; }
};

02.增减字符串匹配

题目链接:https://leetcode.cn/problems/di-string-match/

由范围 [0,n] 内所有整数组成的 n + 1 个整数的排列序列可以表示为长度为 n 的字符串 s ,其中:

  • 如果 perm[i] < perm[i + 1] ,那么 s[i] == 'I'
  • 如果 perm[i] > perm[i + 1] ,那么 s[i] == 'D'

给定一个字符串 s ,重构排列 perm 并返回它。如果有多个有效排列perm,则返回其中 任何一个

示例 1:

输入:s = "IDID"
输出:[0,4,1,3,2]

示例 2:

输入:s = "III"
输出:[0,1,2,3]

示例 3:

输入:s = "DDI"
输出:[3,2,0,1]

提示:

  • 1 <= s.length <= 105
  • s 只包含字符 "I""D"

思路

当遇到字符I时,为了让上升的数有更多选择空间,我们可以选择当前可选择最小的那个数,反之,选择最大的数。

代码

class Solution {
public:vector<int> diStringMatch(string s) {int n=s.size();int left=0,right=n;vector<int> ret;for(int i=0;i<n;i++){if(s[i]=='I') ret.push_back(left++);else ret.push_back(right--);}ret.push_back(left);return ret;}
};

03.分发饼干

题目链接:https://leetcode.cn/problems/assign-cookies/

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

示例 1:

输入: g = [1,2,3], s = [1,1]
输出: 1
解释: 
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。

示例 2:

输入: g = [1,2], s = [1,2,3]
输出: 2
解释: 
你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.

提示:

  • 1 <= g.length <= 3 * 104
  • 0 <= s.length <= 3 * 104
  • 1 <= g[i], s[j] <= 231 - 1

思路

我们使用最小匹配的方式,将两个数组进行排序,找到每一个刚好能够逐个满足小孩的饼干,直至饼干消耗完结束。

代码

class Solution {
public:int findContentChildren(vector<int>& g, vector<int>& s) {sort(g.begin(),g.end());sort(s.begin(),s.end());int ret=0,m=g.size(),n=s.size();for(int i=0,j=0;i<m&&j<n;i++,j++){while(j<n&&s[j]<g[i]) j++;if(j<n) ret++;}return ret;}
};

04.最优除法

题目链接:https://leetcode.cn/problems/optimal-division/

给定一正整数数组 numsnums 中的相邻整数将进行浮点除法。例如, [2,3,4] -> 2 / 3 / 4 。

  • 例如,nums = [2,3,4],我们将求表达式的值 "2/3/4"

但是,你可以在任意位置添加任意数目的括号,来改变算数的优先级。你需要找出怎么添加括号,以便计算后的表达式的值为最大值。

以字符串格式返回具有最大值的对应表达式。

**注意:**你的表达式不应该包含多余的括号。

示例 1:

输入: [1000,100,10,2]
输出: "1000/(100/10/2)"
解释: 1000/(100/10/2) = 1000/((100/10)/2) = 200
但是,以下加粗的括号 "1000/((100/10)/2)" 是冗余的,
因为他们并不影响操作的优先级,所以你需要返回 "1000/(100/10/2)"。其他用例:
1000/(100/10)/2 = 50
1000/(100/(10/2)) = 50
1000/100/10/2 = 0.5
1000/100/(10/2) = 2

示例 2:

输入: nums = [2,3,4]
输出: "2/(3/4)"
解释: (2/(3/4)) = 8/3 = 2.667
可以看出,在尝试了所有的可能性之后,我们无法得到一个结果大于 2.667 的表达式。

说明:

  • 1 <= nums.length <= 10
  • 2 <= nums[i] <= 1000
  • 对于给定的输入只有一种最优除法。

思路

我们可以通过例子发现,前两个位置的数无法被改变,在这道题中,为了让结果最大,我们应将第二个位置之后的数都变成分子,所以我们只需要将括号加在第二位至最后一位即可得出最大数。

代码

class Solution {
public:string optimalDivision(vector<int>& nums) {int n=nums.size();string ret;if(n==1) return to_string(nums[0]);else if(n==2) return to_string(nums[0])+"/"+to_string(nums[1]);else{ret+=to_string(nums[0])+"/("+to_string(nums[1]);for(int i=2;i<n;i++) ret+=("/"+to_string(nums[i]));}ret+=")";return ret;}
};

这篇关于算法沉淀——贪心算法四(leetcode真题剖析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/831081

相关文章

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

usaco 1.3 Barn Repair(贪心)

思路:用上M块木板时有 M-1 个间隙。目标是让总间隙最大。将相邻两个有牛的牛棚之间间隔的牛棚数排序,选取最大的M-1个作为间隙,其余地方用木板盖住。 做法: 1.若,板(M) 的数目大于或等于 牛棚中有牛的数目(C),则 目测 给每个牛牛发一个板就为最小的需求~ 2.否则,先对 牛牛们的门牌号排序,然后 用一个数组 blank[ ] 记录两门牌号之间的距离,然后 用数组 an

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费