李理:三层卷积网络和vgg的实现

2024-03-20 22:30

本文主要是介绍李理:三层卷积网络和vgg的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本系列文章面向深度学习研发者,希望通过Image Caption Generation,一个有意思的具体任务,深入浅出地介绍深度学习的知识。本系列文章涉及到很多深度学习流行的模型,如CNN,RNN/LSTM,Attention等。本文为第12篇。

作者:李理
目前就职于环信,即时通讯云平台和全媒体智能客服平台,在环信从事智能客服和智能机器人相关工作,致力于用深度学习来提高智能机器人的性能。

相关文章:
李理:从Image Caption Generation理解深度学习(part I)
李理:从Image Caption Generation理解深度学习(part II)
李理:从Image Caption Generation理解深度学习(part III)
李理:自动梯度求解 反向传播算法的另外一种视角
李理:自动梯度求解——cs231n的notes
李理:自动梯度求解——使用自动求导实现多层神经网络
李理:详解卷积神经网络
李理:Theano tutorial和卷积神经网络的Theano实现 Part1
李理:Theano tutorial和卷积神经网络的Theano实现 Part2
李理:卷积神经网络之Batch Normalization的原理及实现
李理:卷积神经网络之Dropout

卷积神经网络的原理已经在《李理:卷积神经网络之Batch Normalization的原理及实现》以及《李理:卷积神经网络之Dropout》二文中详细讲过了,这里我们看怎么实现。

5.1 cell1-2

打开ConvolutionalNetworks.ipynb,运行cell1和2

5.2 cell3 实现最原始的卷积层的forward部分

打开layers.py,实现conv_forward_naive里的缺失代码:

N, C, H, W = x.shapeF, _, HH, WW = w.shapestride = conv_param['stride']pad = conv_param['pad']H_out = 1 + (H + 2 * pad - HH) / strideW_out = 1 + (W + 2 * pad - WW) / strideout = np.zeros((N,F,H_out,W_out))# Pad the inputx_pad = np.zeros((N,C,H+2*pad,W+2*pad))for n in range(N):for c in range(C):x_pad[n,c] = np.pad(x[n,c],(pad,pad),'constant', constant_values=(0,0))for n in range(N):for i in range(H_out):for j in range(W_out):current_x_matrix = x_pad[n, :, i * stride: i * stride + HH, j * stride:j * stride + WW]for f in range(F):current_filter = w[f]out[n,f,i,j] = np.sum(current_x_matrix*current_filter)out[n,:,i,j] = out[n,:,i,j]+b

我们来逐行来阅读上面的代码

5.2.1 第1行

首先输入x的shape是(N, C, H, W),N是batchSize,C是输入的channel数,H和W是输入的Height和Width

5.2.2 第2行

参数w的shape是(F, C, HH, WW),F是Filter的个数,HH是Filter的Height,WW是Filter的Width

5.2.3 第3-4行

从conv_param里读取stride和pad

5.2.4 第5-6行

计算输出的H_out和W_out

5.2.5 第7行

定义输出的变量out,它的shape是(N, F, H_out, W_out)

5.2.6 第8-11行

对x进行padding,所谓的padding,就是在一个矩阵的四角补充0。

首先我们来熟悉一下numpy.pad这个函数。

In [19]: x=np.array([[1,2],[3,4],[5,6]])In [20]: x
Out[20]: 
array([[1, 2],[3, 4],[5, 6]])

首先我们定义一个3*2的矩阵

然后给它左上和右下都padding1个0。

In [21]: y=np.pad(x,(1,1),'constant', constant_values=(0,0))In [22]: y
Out[22]: 
array([[0, 0, 0, 0],[0, 1, 2, 0],[0, 3, 4, 0],[0, 5, 6, 0],[0, 0, 0, 0]])

我们看到3*2的矩阵的上下左右都补了一个0。

我们也可以只给左上补0:

In [23]: y=np.pad(x,(1,0),'constant', constant_values=(0,0))In [24]: y
Out[24]: 
array([[0, 0, 0],[0, 1, 2],[0, 3, 4],[0, 5, 6]])

了解了pad函数之后,上面的代码就很容易阅读了。对于每一个样本,对于每一个channel,这都是一个二位的数组,我们根据参数pad对它进行padding。

5.2.7 第12-19行

这几行代码就是按照卷积的定义:对于输出的每一个样本(for n in range(N)),对于输出的每一个下标i和j,我们遍历所有F个filter,首先找到要计算的局部感知域:

current_x_matrix = x_pad[n,:, i*stride: i*stride+HH, j*stride:j*stride+WW]

这会得到一个(C, HH, WW)的ndarray,也就是下标i和j对应的。

然后我们把这个filter的参数都拿出来:

current_filter = w[f]

它也是(C, HH, WW)的ndarray。

然后对应下标乘起来,最后加起来。

如果最简单的实现,我们还应该加上bias

out[n,f,i,j]+=b[f]

这也是可以的,但是为了提高运算速度,我们可以把所有filter的bias一次用向量加法实现,也就是上面代码的方式。

其中烦琐的地方就是怎么通过slice得到当前的current_x_matrix。不清楚的地方可以参考下图:

图片描述

关于上面的4个for循环,其实还有一种等价而且看起来更自然的实现:

  for n in range(N):for f in range(F):current_filter = w[f]for i in range(H_out):for j in range(W_out):current_x_matrix = x_pad[n, :, i * stride: i * stride + HH, j * stride:j * stride + WW]out[n, f, i, j] = np.sum(current_x_matrix * current_filter)out[n, f, i, j] = out[n, f, i, j] + b[f]

为什么不用这种方式呢?

首先这种方式bias没有办法写出向量的形式了,其次我觉得最大的问题是切片操作次数太多,对于这种方式,current_x_matrix从x_pad切片的调用次数是N F H_out*W_out。切片会访问不连续的内存,这是会极大影响性能的。

5.3 cell4

通过卷积实现图像处理。

这个cell通过卷积来进行图像处理,实现到灰度图的转化和边缘检测。这一方面可以验证我们之前的算法,另外也可以演示卷积可以提取一些特征。

实现灰度图比较简单,每个像素都是 gray=r∗0.1+b∗0.6+g∗0.3
用一个卷积来实现就是:

w[0, 0, :, :] = [[0, 0, 0], [0, 0.3, 0], [0, 0, 0]]
w[0, 1, :, :] = [[0, 0, 0], [0, 0.6, 0], [0, 0, 0]]
w[0, 2, :, :] = [[0, 0, 0], [0, 0.1, 0], [0, 0, 0]]

而下面的filter是一个sobel算子,用来检测水平的边缘:

w[1, 0, :, :] =0
w[1, 1, :, :] =0
w[1, 2, :, :] = [[1, 2, 1], [0, 0, 0], [-1, -2, -1]]

感兴趣的读者可以参考 sobel operator
读者可能问了,这么做有什么意义?这个例子想说明的是卷积能够做一些图像处理的事情,而通过数据的驱动,是可以(可能)学习出这样的特征的。而在深度学习之前,很多时候是人工在提取这些特征。以前做图像识别,需要很多这样的算子,需要很多图像处理的技术,而现在就不需要那么多了。

这个cell不需要实现什么代码,直接运行就好了。

图片描述

5.4 cell5 实现conv_backward_naive

代码如下:

  x, w, b, conv_param = cachestride = conv_param['stride']pad = conv_param['pad']N, C, H, W = x.shapeF, _, HH, WW = w.shape_,_,H_out,W_out = dout.shapex_pad = np.zeros((N,C,H+2*pad,W+2*pad))for n in range(N):for c in range(C):x_pad[n,c] = np.pad(x[n,c],(pad,pad),'constant', constant_values=(0,0))db = np.zeros((F))dw = np.zeros(w.shape)dx_pad = np.zeros(x_pad.shape)for n in range(N):for i in range(H_out):for j in range(W_out):current_x_matrix = x_pad[n, :, i * stride: i * stride + HH, j * stride:j * stride + WW]for f in range(F):dw[f] = dw[f] + dout[n,f,i,j]* current_x_matrixdx_pad[n,:, i*stride: i*stride+HH, j*stride:j*stride+WW] += w[f]*dout[n,f,i,j]db = db + dout[n,:,i,j]dx = dx_pad[:,:,pad:H+pad,pad:W+pad]

代码和forward很像,首先是把cache里的值取出来。由于x_pad没有放到cache里,这里还需要算一遍,当然也可以修改上面的forward,这样避免padding。

然后定义db,dw,dx_pad

最后是和forward完全一样的一个4层for循环,区别是:

    #forwardcurrent_x_matrix = x_pad[n, :, i * stride: i * stride + HH, j * stride:j * stride + WW]out[n,f,i,j] = np.sum(current_x_matrix* w[f])#backwarddw[f] += dout[n,f,i,j]*current_x_matrixdx_pad[....]+=dout * w[f]

这里的小小技巧就是 z=np.sum(matrix1*matrix2),怎么求dz/dmatrix1。
答案就是matrix2。

图片描述

所以写出矩阵的形式就是dz/matrix1=matrix2。

我们运行一下这个cell,如果相对误差小于10的-9次方,那么我们的实现就是没有问题的。

5.5 cell6 实现max_pool_forward_naive

  N, C, H, W = x.shapepool_height = pool_param['pool_height']pool_width = pool_param['pool_width']

这篇关于李理:三层卷积网络和vgg的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/830958

相关文章

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动