李理:三层卷积网络和vgg的实现

2024-03-20 22:30

本文主要是介绍李理:三层卷积网络和vgg的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本系列文章面向深度学习研发者,希望通过Image Caption Generation,一个有意思的具体任务,深入浅出地介绍深度学习的知识。本系列文章涉及到很多深度学习流行的模型,如CNN,RNN/LSTM,Attention等。本文为第12篇。

作者:李理
目前就职于环信,即时通讯云平台和全媒体智能客服平台,在环信从事智能客服和智能机器人相关工作,致力于用深度学习来提高智能机器人的性能。

相关文章:
李理:从Image Caption Generation理解深度学习(part I)
李理:从Image Caption Generation理解深度学习(part II)
李理:从Image Caption Generation理解深度学习(part III)
李理:自动梯度求解 反向传播算法的另外一种视角
李理:自动梯度求解——cs231n的notes
李理:自动梯度求解——使用自动求导实现多层神经网络
李理:详解卷积神经网络
李理:Theano tutorial和卷积神经网络的Theano实现 Part1
李理:Theano tutorial和卷积神经网络的Theano实现 Part2
李理:卷积神经网络之Batch Normalization的原理及实现
李理:卷积神经网络之Dropout

卷积神经网络的原理已经在《李理:卷积神经网络之Batch Normalization的原理及实现》以及《李理:卷积神经网络之Dropout》二文中详细讲过了,这里我们看怎么实现。

5.1 cell1-2

打开ConvolutionalNetworks.ipynb,运行cell1和2

5.2 cell3 实现最原始的卷积层的forward部分

打开layers.py,实现conv_forward_naive里的缺失代码:

N, C, H, W = x.shapeF, _, HH, WW = w.shapestride = conv_param['stride']pad = conv_param['pad']H_out = 1 + (H + 2 * pad - HH) / strideW_out = 1 + (W + 2 * pad - WW) / strideout = np.zeros((N,F,H_out,W_out))# Pad the inputx_pad = np.zeros((N,C,H+2*pad,W+2*pad))for n in range(N):for c in range(C):x_pad[n,c] = np.pad(x[n,c],(pad,pad),'constant', constant_values=(0,0))for n in range(N):for i in range(H_out):for j in range(W_out):current_x_matrix = x_pad[n, :, i * stride: i * stride + HH, j * stride:j * stride + WW]for f in range(F):current_filter = w[f]out[n,f,i,j] = np.sum(current_x_matrix*current_filter)out[n,:,i,j] = out[n,:,i,j]+b

我们来逐行来阅读上面的代码

5.2.1 第1行

首先输入x的shape是(N, C, H, W),N是batchSize,C是输入的channel数,H和W是输入的Height和Width

5.2.2 第2行

参数w的shape是(F, C, HH, WW),F是Filter的个数,HH是Filter的Height,WW是Filter的Width

5.2.3 第3-4行

从conv_param里读取stride和pad

5.2.4 第5-6行

计算输出的H_out和W_out

5.2.5 第7行

定义输出的变量out,它的shape是(N, F, H_out, W_out)

5.2.6 第8-11行

对x进行padding,所谓的padding,就是在一个矩阵的四角补充0。

首先我们来熟悉一下numpy.pad这个函数。

In [19]: x=np.array([[1,2],[3,4],[5,6]])In [20]: x
Out[20]: 
array([[1, 2],[3, 4],[5, 6]])

首先我们定义一个3*2的矩阵

然后给它左上和右下都padding1个0。

In [21]: y=np.pad(x,(1,1),'constant', constant_values=(0,0))In [22]: y
Out[22]: 
array([[0, 0, 0, 0],[0, 1, 2, 0],[0, 3, 4, 0],[0, 5, 6, 0],[0, 0, 0, 0]])

我们看到3*2的矩阵的上下左右都补了一个0。

我们也可以只给左上补0:

In [23]: y=np.pad(x,(1,0),'constant', constant_values=(0,0))In [24]: y
Out[24]: 
array([[0, 0, 0],[0, 1, 2],[0, 3, 4],[0, 5, 6]])

了解了pad函数之后,上面的代码就很容易阅读了。对于每一个样本,对于每一个channel,这都是一个二位的数组,我们根据参数pad对它进行padding。

5.2.7 第12-19行

这几行代码就是按照卷积的定义:对于输出的每一个样本(for n in range(N)),对于输出的每一个下标i和j,我们遍历所有F个filter,首先找到要计算的局部感知域:

current_x_matrix = x_pad[n,:, i*stride: i*stride+HH, j*stride:j*stride+WW]

这会得到一个(C, HH, WW)的ndarray,也就是下标i和j对应的。

然后我们把这个filter的参数都拿出来:

current_filter = w[f]

它也是(C, HH, WW)的ndarray。

然后对应下标乘起来,最后加起来。

如果最简单的实现,我们还应该加上bias

out[n,f,i,j]+=b[f]

这也是可以的,但是为了提高运算速度,我们可以把所有filter的bias一次用向量加法实现,也就是上面代码的方式。

其中烦琐的地方就是怎么通过slice得到当前的current_x_matrix。不清楚的地方可以参考下图:

图片描述

关于上面的4个for循环,其实还有一种等价而且看起来更自然的实现:

  for n in range(N):for f in range(F):current_filter = w[f]for i in range(H_out):for j in range(W_out):current_x_matrix = x_pad[n, :, i * stride: i * stride + HH, j * stride:j * stride + WW]out[n, f, i, j] = np.sum(current_x_matrix * current_filter)out[n, f, i, j] = out[n, f, i, j] + b[f]

为什么不用这种方式呢?

首先这种方式bias没有办法写出向量的形式了,其次我觉得最大的问题是切片操作次数太多,对于这种方式,current_x_matrix从x_pad切片的调用次数是N F H_out*W_out。切片会访问不连续的内存,这是会极大影响性能的。

5.3 cell4

通过卷积实现图像处理。

这个cell通过卷积来进行图像处理,实现到灰度图的转化和边缘检测。这一方面可以验证我们之前的算法,另外也可以演示卷积可以提取一些特征。

实现灰度图比较简单,每个像素都是 gray=r∗0.1+b∗0.6+g∗0.3
用一个卷积来实现就是:

w[0, 0, :, :] = [[0, 0, 0], [0, 0.3, 0], [0, 0, 0]]
w[0, 1, :, :] = [[0, 0, 0], [0, 0.6, 0], [0, 0, 0]]
w[0, 2, :, :] = [[0, 0, 0], [0, 0.1, 0], [0, 0, 0]]

而下面的filter是一个sobel算子,用来检测水平的边缘:

w[1, 0, :, :] =0
w[1, 1, :, :] =0
w[1, 2, :, :] = [[1, 2, 1], [0, 0, 0], [-1, -2, -1]]

感兴趣的读者可以参考 sobel operator
读者可能问了,这么做有什么意义?这个例子想说明的是卷积能够做一些图像处理的事情,而通过数据的驱动,是可以(可能)学习出这样的特征的。而在深度学习之前,很多时候是人工在提取这些特征。以前做图像识别,需要很多这样的算子,需要很多图像处理的技术,而现在就不需要那么多了。

这个cell不需要实现什么代码,直接运行就好了。

图片描述

5.4 cell5 实现conv_backward_naive

代码如下:

  x, w, b, conv_param = cachestride = conv_param['stride']pad = conv_param['pad']N, C, H, W = x.shapeF, _, HH, WW = w.shape_,_,H_out,W_out = dout.shapex_pad = np.zeros((N,C,H+2*pad,W+2*pad))for n in range(N):for c in range(C):x_pad[n,c] = np.pad(x[n,c],(pad,pad),'constant', constant_values=(0,0))db = np.zeros((F))dw = np.zeros(w.shape)dx_pad = np.zeros(x_pad.shape)for n in range(N):for i in range(H_out):for j in range(W_out):current_x_matrix = x_pad[n, :, i * stride: i * stride + HH, j * stride:j * stride + WW]for f in range(F):dw[f] = dw[f] + dout[n,f,i,j]* current_x_matrixdx_pad[n,:, i*stride: i*stride+HH, j*stride:j*stride+WW] += w[f]*dout[n,f,i,j]db = db + dout[n,:,i,j]dx = dx_pad[:,:,pad:H+pad,pad:W+pad]

代码和forward很像,首先是把cache里的值取出来。由于x_pad没有放到cache里,这里还需要算一遍,当然也可以修改上面的forward,这样避免padding。

然后定义db,dw,dx_pad

最后是和forward完全一样的一个4层for循环,区别是:

    #forwardcurrent_x_matrix = x_pad[n, :, i * stride: i * stride + HH, j * stride:j * stride + WW]out[n,f,i,j] = np.sum(current_x_matrix* w[f])#backwarddw[f] += dout[n,f,i,j]*current_x_matrixdx_pad[....]+=dout * w[f]

这里的小小技巧就是 z=np.sum(matrix1*matrix2),怎么求dz/dmatrix1。
答案就是matrix2。

图片描述

所以写出矩阵的形式就是dz/matrix1=matrix2。

我们运行一下这个cell,如果相对误差小于10的-9次方,那么我们的实现就是没有问题的。

5.5 cell6 实现max_pool_forward_naive

  N, C, H, W = x.shapepool_height = pool_param['pool_height']pool_width = pool_param['pool_width']

这篇关于李理:三层卷积网络和vgg的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/830958

相关文章

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

【Altium】查找PCB上未连接的网络

【更多软件使用问题请点击亿道电子官方网站】 1、文档目标: PCB设计后期检查中找出没有连接的网络 应用场景:PCB设计后期,需要检查是否所有网络都已连接布线。虽然未连接的网络会有飞线显示,但是由于布线后期整板布线密度较高,虚连,断连的网络用肉眼难以轻易发现。用DRC检查也可以找出未连接的网络,如果PCB中DRC问题较多,查找起来就不是很方便。使用PCB Filter面板来达成目的相比DRC

通过SSH隧道实现通过远程服务器上外网

搭建隧道 autossh -M 0 -f -D 1080 -C -N user1@remotehost##验证隧道是否生效,查看1080端口是否启动netstat -tuln | grep 1080## 测试ssh 隧道是否生效curl -x socks5h://127.0.0.1:1080 -I http://www.github.com 将autossh 设置为服务,隧道开机启动

通信系统网络架构_2.广域网网络架构

1.概述          通俗来讲,广域网是将分布于相比局域网络更广区域的计算机设备联接起来的网络。广域网由通信子网于资源子网组成。通信子网可以利用公用分组交换网、卫星通信网和无线分组交换网构建,将分布在不同地区的局域网或计算机系统互连起来,实现资源子网的共享。 2.网络组成          广域网属于多级网络,通常由骨干网、分布网、接入网组成。在网络规模较小时,可仅由骨干网和接入网组成

YOLOv8改进 | SPPF | 具有多尺度带孔卷积层的ASPP【CVPR2018】

💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 专栏目录 :《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有40+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进——点击即可跳转 Atrous Spatial Pyramid Pooling (ASPP) 是一种在深度学习框架中用于语义分割的网络结构,它旨

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测 目录 时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测基本介绍程序设计参考资料 基本介绍 MATLAB实现LSTM时间序列未来多步预测-递归预测。LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为

vue项目集成CanvasEditor实现Word在线编辑器

CanvasEditor实现Word在线编辑器 官网文档:https://hufe.club/canvas-editor-docs/guide/schema.html 源码地址:https://github.com/Hufe921/canvas-editor 前提声明: 由于CanvasEditor目前不支持vue、react 等框架开箱即用版,所以需要我们去Git下载源码,拿到其中两个主

android一键分享功能部分实现

为什么叫做部分实现呢,其实是我只实现一部分的分享。如新浪微博,那还有没去实现的是微信分享。还有一部分奇怪的问题:我QQ分享跟QQ空间的分享功能,我都没配置key那些都是原本集成就有的key也可以实现分享,谁清楚的麻烦详解下。 实现分享功能我们可以去www.mob.com这个网站集成。免费的,而且还有短信验证功能。等这分享研究完后就研究下短信验证功能。 开始实现步骤(新浪分享,以下是本人自己实现

Toolbar+DrawerLayout使用详情结合网络各大神

最近也想搞下toolbar+drawerlayout的使用。结合网络上各大神的杰作,我把大部分的内容效果都完成了遍。现在记录下各个功能效果的实现以及一些细节注意点。 这图弹出两个菜单内容都是仿QQ界面的选项。左边一个是drawerlayout的弹窗。右边是toolbar的popup弹窗。 开始实现步骤详情: 1.创建toolbar布局跟drawerlayout布局 <?xml vers

基于Springboot + vue 的抗疫物质管理系统的设计与实现

目录 📚 前言 📑摘要 📑系统流程 📚 系统架构设计 📚 数据库设计 📚 系统功能的具体实现    💬 系统登录注册 系统登录 登录界面   用户添加  💬 抗疫列表展示模块     区域信息管理 添加物资详情 抗疫物资列表展示 抗疫物资申请 抗疫物资审核 ✒️ 源码实现 💖 源码获取 😁 联系方式 📚 前言 📑博客主页: