李理:三层卷积网络和vgg的实现

2024-03-20 22:30

本文主要是介绍李理:三层卷积网络和vgg的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本系列文章面向深度学习研发者,希望通过Image Caption Generation,一个有意思的具体任务,深入浅出地介绍深度学习的知识。本系列文章涉及到很多深度学习流行的模型,如CNN,RNN/LSTM,Attention等。本文为第12篇。

作者:李理
目前就职于环信,即时通讯云平台和全媒体智能客服平台,在环信从事智能客服和智能机器人相关工作,致力于用深度学习来提高智能机器人的性能。

相关文章:
李理:从Image Caption Generation理解深度学习(part I)
李理:从Image Caption Generation理解深度学习(part II)
李理:从Image Caption Generation理解深度学习(part III)
李理:自动梯度求解 反向传播算法的另外一种视角
李理:自动梯度求解——cs231n的notes
李理:自动梯度求解——使用自动求导实现多层神经网络
李理:详解卷积神经网络
李理:Theano tutorial和卷积神经网络的Theano实现 Part1
李理:Theano tutorial和卷积神经网络的Theano实现 Part2
李理:卷积神经网络之Batch Normalization的原理及实现
李理:卷积神经网络之Dropout

卷积神经网络的原理已经在《李理:卷积神经网络之Batch Normalization的原理及实现》以及《李理:卷积神经网络之Dropout》二文中详细讲过了,这里我们看怎么实现。

5.1 cell1-2

打开ConvolutionalNetworks.ipynb,运行cell1和2

5.2 cell3 实现最原始的卷积层的forward部分

打开layers.py,实现conv_forward_naive里的缺失代码:

N, C, H, W = x.shapeF, _, HH, WW = w.shapestride = conv_param['stride']pad = conv_param['pad']H_out = 1 + (H + 2 * pad - HH) / strideW_out = 1 + (W + 2 * pad - WW) / strideout = np.zeros((N,F,H_out,W_out))# Pad the inputx_pad = np.zeros((N,C,H+2*pad,W+2*pad))for n in range(N):for c in range(C):x_pad[n,c] = np.pad(x[n,c],(pad,pad),'constant', constant_values=(0,0))for n in range(N):for i in range(H_out):for j in range(W_out):current_x_matrix = x_pad[n, :, i * stride: i * stride + HH, j * stride:j * stride + WW]for f in range(F):current_filter = w[f]out[n,f,i,j] = np.sum(current_x_matrix*current_filter)out[n,:,i,j] = out[n,:,i,j]+b

我们来逐行来阅读上面的代码

5.2.1 第1行

首先输入x的shape是(N, C, H, W),N是batchSize,C是输入的channel数,H和W是输入的Height和Width

5.2.2 第2行

参数w的shape是(F, C, HH, WW),F是Filter的个数,HH是Filter的Height,WW是Filter的Width

5.2.3 第3-4行

从conv_param里读取stride和pad

5.2.4 第5-6行

计算输出的H_out和W_out

5.2.5 第7行

定义输出的变量out,它的shape是(N, F, H_out, W_out)

5.2.6 第8-11行

对x进行padding,所谓的padding,就是在一个矩阵的四角补充0。

首先我们来熟悉一下numpy.pad这个函数。

In [19]: x=np.array([[1,2],[3,4],[5,6]])In [20]: x
Out[20]: 
array([[1, 2],[3, 4],[5, 6]])

首先我们定义一个3*2的矩阵

然后给它左上和右下都padding1个0。

In [21]: y=np.pad(x,(1,1),'constant', constant_values=(0,0))In [22]: y
Out[22]: 
array([[0, 0, 0, 0],[0, 1, 2, 0],[0, 3, 4, 0],[0, 5, 6, 0],[0, 0, 0, 0]])

我们看到3*2的矩阵的上下左右都补了一个0。

我们也可以只给左上补0:

In [23]: y=np.pad(x,(1,0),'constant', constant_values=(0,0))In [24]: y
Out[24]: 
array([[0, 0, 0],[0, 1, 2],[0, 3, 4],[0, 5, 6]])

了解了pad函数之后,上面的代码就很容易阅读了。对于每一个样本,对于每一个channel,这都是一个二位的数组,我们根据参数pad对它进行padding。

5.2.7 第12-19行

这几行代码就是按照卷积的定义:对于输出的每一个样本(for n in range(N)),对于输出的每一个下标i和j,我们遍历所有F个filter,首先找到要计算的局部感知域:

current_x_matrix = x_pad[n,:, i*stride: i*stride+HH, j*stride:j*stride+WW]

这会得到一个(C, HH, WW)的ndarray,也就是下标i和j对应的。

然后我们把这个filter的参数都拿出来:

current_filter = w[f]

它也是(C, HH, WW)的ndarray。

然后对应下标乘起来,最后加起来。

如果最简单的实现,我们还应该加上bias

out[n,f,i,j]+=b[f]

这也是可以的,但是为了提高运算速度,我们可以把所有filter的bias一次用向量加法实现,也就是上面代码的方式。

其中烦琐的地方就是怎么通过slice得到当前的current_x_matrix。不清楚的地方可以参考下图:

图片描述

关于上面的4个for循环,其实还有一种等价而且看起来更自然的实现:

  for n in range(N):for f in range(F):current_filter = w[f]for i in range(H_out):for j in range(W_out):current_x_matrix = x_pad[n, :, i * stride: i * stride + HH, j * stride:j * stride + WW]out[n, f, i, j] = np.sum(current_x_matrix * current_filter)out[n, f, i, j] = out[n, f, i, j] + b[f]

为什么不用这种方式呢?

首先这种方式bias没有办法写出向量的形式了,其次我觉得最大的问题是切片操作次数太多,对于这种方式,current_x_matrix从x_pad切片的调用次数是N F H_out*W_out。切片会访问不连续的内存,这是会极大影响性能的。

5.3 cell4

通过卷积实现图像处理。

这个cell通过卷积来进行图像处理,实现到灰度图的转化和边缘检测。这一方面可以验证我们之前的算法,另外也可以演示卷积可以提取一些特征。

实现灰度图比较简单,每个像素都是 gray=r∗0.1+b∗0.6+g∗0.3
用一个卷积来实现就是:

w[0, 0, :, :] = [[0, 0, 0], [0, 0.3, 0], [0, 0, 0]]
w[0, 1, :, :] = [[0, 0, 0], [0, 0.6, 0], [0, 0, 0]]
w[0, 2, :, :] = [[0, 0, 0], [0, 0.1, 0], [0, 0, 0]]

而下面的filter是一个sobel算子,用来检测水平的边缘:

w[1, 0, :, :] =0
w[1, 1, :, :] =0
w[1, 2, :, :] = [[1, 2, 1], [0, 0, 0], [-1, -2, -1]]

感兴趣的读者可以参考 sobel operator
读者可能问了,这么做有什么意义?这个例子想说明的是卷积能够做一些图像处理的事情,而通过数据的驱动,是可以(可能)学习出这样的特征的。而在深度学习之前,很多时候是人工在提取这些特征。以前做图像识别,需要很多这样的算子,需要很多图像处理的技术,而现在就不需要那么多了。

这个cell不需要实现什么代码,直接运行就好了。

图片描述

5.4 cell5 实现conv_backward_naive

代码如下:

  x, w, b, conv_param = cachestride = conv_param['stride']pad = conv_param['pad']N, C, H, W = x.shapeF, _, HH, WW = w.shape_,_,H_out,W_out = dout.shapex_pad = np.zeros((N,C,H+2*pad,W+2*pad))for n in range(N):for c in range(C):x_pad[n,c] = np.pad(x[n,c],(pad,pad),'constant', constant_values=(0,0))db = np.zeros((F))dw = np.zeros(w.shape)dx_pad = np.zeros(x_pad.shape)for n in range(N):for i in range(H_out):for j in range(W_out):current_x_matrix = x_pad[n, :, i * stride: i * stride + HH, j * stride:j * stride + WW]for f in range(F):dw[f] = dw[f] + dout[n,f,i,j]* current_x_matrixdx_pad[n,:, i*stride: i*stride+HH, j*stride:j*stride+WW] += w[f]*dout[n,f,i,j]db = db + dout[n,:,i,j]dx = dx_pad[:,:,pad:H+pad,pad:W+pad]

代码和forward很像,首先是把cache里的值取出来。由于x_pad没有放到cache里,这里还需要算一遍,当然也可以修改上面的forward,这样避免padding。

然后定义db,dw,dx_pad

最后是和forward完全一样的一个4层for循环,区别是:

    #forwardcurrent_x_matrix = x_pad[n, :, i * stride: i * stride + HH, j * stride:j * stride + WW]out[n,f,i,j] = np.sum(current_x_matrix* w[f])#backwarddw[f] += dout[n,f,i,j]*current_x_matrixdx_pad[....]+=dout * w[f]

这里的小小技巧就是 z=np.sum(matrix1*matrix2),怎么求dz/dmatrix1。
答案就是matrix2。

图片描述

所以写出矩阵的形式就是dz/matrix1=matrix2。

我们运行一下这个cell,如果相对误差小于10的-9次方,那么我们的实现就是没有问题的。

5.5 cell6 实现max_pool_forward_naive

  N, C, H, W = x.shapepool_height = pool_param['pool_height']pool_width = pool_param['pool_width']

这篇关于李理:三层卷积网络和vgg的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/830958

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文