YOLOv9如何提高检测精度(NEU-DET为案列)

2024-03-20 18:12

本文主要是介绍YOLOv9如何提高检测精度(NEU-DET为案列),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  💡💡💡本文改进内容: 通过各个YOLOv9魔术师专栏改进点提升原始网络检测精度,目前跑完的实验有:

1)超轻量高效动态上采样DySample

2)基于 Haar 小波的下采样(HWD)

YOLOv9魔术师专栏

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、24年最新顶会改进思路、原创自研paper级创新等

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

✨✨✨ 新开专栏暂定免费限时开放,后续每月调价一次✨✨✨

🚀🚀🚀 本项目持续更新 | 更新完结保底≥50+ ,冲刺100+🚀🚀🚀

🍉🍉🍉 联系WX: AI_CV_0624 欢迎交流!🍉🍉🍉

YOLOv9魔改:注意力机制、检测头、blcok魔改、自研原创等

 YOLOv9魔术师

💡💡💡全网独家首发创新(原创),适合paper !!!

💡💡💡 2024年计算机视觉顶会创新点适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!

💡💡💡重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!

 1.YOLOv9原理介绍

论文: 2402.13616.pdf (arxiv.org)

代码:GitHub - WongKinYiu/yolov9: Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information摘要: 如今的深度学习方法重点关注如何设计最合适的目标函数,从而使得模型的预测结果能够最接近真实情况。同时,必须设计一个适当的架构,可以帮助获取足够的信息进行预测。然而,现有方法忽略了一个事实,即当输入数据经过逐层特征提取和空间变换时,大量信息将会丢失。因此,YOLOv9 深入研究了数据通过深度网络传输时数据丢失的重要问题,即信息瓶颈和可逆函数。作者提出了可编程梯度信息(programmable gradient information,PGI)的概念,来应对深度网络实现多个目标所需要的各种变化。PGI 可以为目标任务计算目标函数提供完整的输入信息,从而获得可靠的梯度信息来更新网络权值。此外,研究者基于梯度路径规划设计了一种新的轻量级网络架构,即通用高效层聚合网络(Generalized Efficient Layer Aggregation Network,GELAN)。该架构证实了 PGI 可以在轻量级模型上取得优异的结果。研究者在基于 MS COCO 数据集的目标检测任务上验证所提出的 GELAN 和 PGI。结果表明,与其他 SOTA 方法相比,GELAN 仅使用传统卷积算子即可实现更好的参数利用率。对于 PGI 而言,它的适用性很强,可用于从轻型到大型的各种模型。我们可以用它来获取完整的信息,从而使从头开始训练的模型能够比使用大型数据集预训练的 SOTA 模型获得更好的结果。对比结果如图1所示。

 YOLOv9框架图

2.NEU-DET数据集介绍 

NEU-DET钢材表面缺陷共有六大类,一共1800张,

类别分别为:'crazing','inclusion','patches','pitted_surface','rolled-in_scale','scratches'

 数据集如何划分详见另一篇博客:

YOLOv9如何训练自己的数据集(NEU-DET为案列)_yolov9训练自己的数据集-CSDN博客

3.YOLOv9可视化分析

3.1原始yolov9-c结果

yolov9-c summary: 604 layers, 50709828 parameters, 0 gradients, 236.7 GFLOPsClass     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 16/16 01:33all        486       1069      0.722      0.704      0.754      0.424crazing        486        149      0.503      0.369       0.42      0.141inclusion        486        222      0.786      0.734      0.805      0.432patches        486        243      0.879      0.872      0.926      0.604pitted_surface        486        130       0.78      0.769      0.796      0.494rolled-in_scale        486        171      0.657      0.585      0.691       0.33scratches        486        154      0.725      0.892      0.884      0.543

F1_curve.png:F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。

TP:真实为真,预测为真;

FN:真实为真,预测为假;

FP:真实为假,预测为真;

TN:真实为假,预测为假;

精确率(precision)=TP/(TP+FP)

召回率(Recall)=TP/(TP+FN)

F1=2*(精确率*召回率)/(精确率+召回率)

 PR_curve.png :PR曲线中的P代表的是precision(精准率)R代表的是recall(召回率),其代表的是精准率与召回率的关系。 

预测结果:  

 3.2 超轻量高效动态上采样DySample

YOLOv9改进策略:上采样涨点系列 | 超轻量高效动态上采样DySample,效果秒杀CAFFE,助力小目标检测-CSDN博客   

论文:https://arxiv.org/pdf/2308.15085.pdf 

摘要:我们介绍DySample,一个超轻量和有效的动态上采样器。虽然最近基于内核的动态上采样器(如CARAFE、FADE和SAPA)的性能提升令人印象深刻,但它们带来了大量的工作负载,主要是由于耗时的动态卷积和用于生成动态内核的额外子网络。此外,对高特征指导的需求在某种程度上限制了它们的应用场景。为了解决这些问题,我们绕过动态卷积并从点采样的角度制定上采样,这更节省资源,并且可以很容易地使用PyTorch中的标准内置函数实现。我们首先展示了一个朴素的设计,然后演示了如何逐步加强其上采样行为,以实现我们的新上采样器DySample。与以前基于内核的动态上采样器相比,DySample不需要定制CUDA包,并且具有更少的参数、FLOPs、GPU内存和延迟。除了轻量级的特点,DySample在五个密集预测任务上优于其他上采样器,包括语义分割、目标检测、实例分割、全视分割和单目深度估计。 

图1所示。不同上采样器的性能、推理速度和GFLOPs的比较。圆圈的大小表示GFLOPs的开销。通过×2上采样大小为256 × 120 × 120的特征图来测试推理时间。在ADE20K数据集[42]上使用SegFormer-B1[40]测试了mIoU性能和额外的gflop。

性能如下:

 

3.2 基于 Haar 小波的下采样(HWD)

 原文链接:YOLOv9改进策略:下采样涨点系列 | 一种新颖的基于 Haar 小波的下采样HWD,有效涨点系列-CSDN博客

链接:https://www.sciencedirect.com/science/article/abs/pii/S0031320323005174

摘要:卷积神经网络中普遍使用最大池化或跨步卷积等下采样操作(CNN)聚合局部特征,扩大感受野,并最小化计算开销。然而,对于语义分割任务,在局部邻域上池化特征可能会导致重要空间信息的丢失,这有利于逐像素预测。为了解决这个问题,我们引入了一种简单而有效的池化操作,称为基于 Haar 小波的下采样(HWD)模块。该模块可以轻松集成到 CNN 中,以增强语义分割模型的性能。HWD的核心思想是应用Haar小波变换来降低特征图的空间分辨率,同时保留尽可能多的信息。此外,为了研究 HWD 的好处,我们提出了一种新的指标,称为特征熵指数(FEI),它衡量 CNN 中下采样后的信息不确定性程度。具体来说,FEI 可用于指示下采样方法在语义分割中保留基本信息的能力。我们的综合实验表明,所提出的 HWD 模块可以(1)有效地提高具有各种 CNN 架构的不同模态图像数据集的分割性能;(2) 与传统的下采样方法相比,有效降低信息不确定性。

        图1所示。DeepLabv3+中平均池化、最大池化、跨行卷积和HWD的下采样示例[13]。与传统的降采样方法相比,HWD后的特征保留了更多的边界、纹理和细节信息,如图(d)中四个红色方块所示,其中树枝得到了更好的保存。

四种不同的池化方法

 图3所示。提出的HWD模块的体系结构由两个主要块组成:无损特征编码块和特征表示学习块。注意,特征映射的通道数可以通过表示学习块来调整。

性能如下:

yolov9-c-HWD summary: 599 layers, 52086084 parameters, 0 gradients, 240.1 GFLOPsClass     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 16/16 00:34all        486       1069      0.742      0.681      0.756       0.43crazing        486        149      0.523      0.289       0.41      0.164inclusion        486        222      0.769       0.73      0.803      0.436patches        486        243      0.841      0.877      0.912      0.587pitted_surface        486        130      0.822      0.738      0.821      0.515rolled-in_scale        486        171      0.703      0.585      0.677      0.295scratches        486        154      0.793       0.87      0.914      0.581

 

这篇关于YOLOv9如何提高检测精度(NEU-DET为案列)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/830327

相关文章

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

如何提高Redis服务器的最大打开文件数限制

《如何提高Redis服务器的最大打开文件数限制》文章讨论了如何提高Redis服务器的最大打开文件数限制,以支持高并发服务,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录如何提高Redis服务器的最大打开文件数限制问题诊断解决步骤1. 修改系统级别的限制2. 为Redis进程特别设置限制

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

键盘快捷键:提高工作效率与电脑操作的利器

键盘快捷键:提高工作效率与电脑操作的利器 在数字化时代,键盘快捷键成为了提高工作效率和优化电脑操作的重要工具。无论是日常办公、图像编辑、编程开发,还是游戏娱乐,掌握键盘快捷键都能带来极大的便利。本文将详细介绍键盘快捷键的概念、重要性、以及在不同应用场景中的具体应用。 什么是键盘快捷键? 键盘快捷键,也称为热键或快捷键,是指通过按下键盘上的一组键来完成特定命令或操作的方式。这些快捷键通常涉及同

CSP 2023 提高级第一轮 CSP-S 2023初试题 完善程序第二题解析 未完

一、题目阅读 (最大值之和)给定整数序列 a0,⋯,an−1,求该序列所有非空连续子序列的最大值之和。上述参数满足 1≤n≤105 和 1≤ai≤108。 一个序列的非空连续子序列可以用两个下标 ll 和 rr(其中0≤l≤r<n0≤l≤r<n)表示,对应的序列为 al,al+1,⋯,ar​。两个非空连续子序列不同,当且仅当下标不同。 例如,当原序列为 [1,2,1,2] 时,要计算子序列 [

如何提高 GitHub 的下载速度

如何提高 GitHub 的下载速度 文章目录 如何提高 GitHub 的下载速度1. 注册账号2. 准备好链接3. 创建仓库4. 在码云上下载代码5. 仓库更新了怎么办 一般来说,国内的朋友从 GitHub 上面下载代码,速度最大是 20KB/s,这种龟速,谁能忍受呢? 本文介绍一种方法——利用“码云”,可以大大提高下载速度,亲测有效。 1. 注册账号 去“码云”注册一

[数据集][目标检测]血细胞检测数据集VOC+YOLO格式2757张4类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2757 标注数量(xml文件个数):2757 标注数量(txt文件个数):2757 标注类别数:4 标注类别名称:["Platelets","RBC","WBC","sickle cell"] 每个类别标注的框数: