distance to convex cone

2024-03-20 17:20
文章标签 distance convex cone

本文主要是介绍distance to convex cone,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基本定义

定义1: 给定 1 ≤ K ≤ N 1 \leq K \leq N 1KN,定义凸锥(convex cone):
D = { x ∣ 1 T x = 0 , x 1 : N − K ≤ 0 , x ∈ R N } \mathrm{D} = \{ \boldsymbol x | \boldsymbol 1^T \boldsymbol x =0, x_{1: N-K} \leq 0, \boldsymbol x \in \mathbb R^N \} D={x1Tx=0,x1:NK0,xRN}

定义2: 若 g ∈ R N \boldsymbol g \in \mathbb R^N gRN是一个高斯向量,且 g ∼ N ( 0 , I N ) \boldsymbol g \sim \mathcal N(\boldsymbol 0, \boldsymbol I_N) gN(0,IN),定义 g \boldsymbol g g到凸锥 D \mathrm D D的映射为:
x = Π D ( g ) , g ∼ N ( 0 , I N ) \boldsymbol x = \Pi_{\mathrm D}(\boldsymbol g), \ \ \boldsymbol g \sim \mathcal N(\boldsymbol 0, \boldsymbol I_N) x=ΠD(g),  gN(0,IN)

其中 x ∈ R N \boldsymbol x \in \mathbb R^N xRN g \boldsymbol g g映射到 D \mathrm D D的向量。

定义3:凸锥 D \mathrm D D的统计维数(Statistical Dimension)可以定义为:
δ ( D ) = E [ ∥ Π D ( g ) ∥ 2 ] , g ∼ N ( 0 , I N ) \delta(\mathrm D) = \mathbb E \left [ \left \Vert \Pi_{\mathrm D}(\boldsymbol g) \right \Vert^2 \right], \ \ \boldsymbol g \sim \mathcal N(\boldsymbol 0, \boldsymbol I_N) δ(D)=E[ΠD(g)2],  gN(0,IN)

问题描述与建模:建模为凸优化问题

目标:给定 D \mathcal D D,计算得到统计维数(Statistical Dimension) δ ( D ) \delta(\mathrm D) δ(D)
问题:如果得到映射向量 x = Π D ( g ) \boldsymbol x = \Pi_{\mathrm D}(\boldsymbol g) x=ΠD(g)?
思路:通过建立以下优化问题

min ⁡ x ∈ D 1 2 ∥ x − g ∥ 2 \min_{\boldsymbol x \in \mathrm D} \frac{1}{2} \left \Vert \boldsymbol x - \boldsymbol g \right \Vert^2 xDmin21xg2

可以等价为

min ⁡ x 1 2 ∥ x − g ∥ 2 subject to x i ≤ 0 , i = 1 , ⋯ , N − K 1 T x = 0 \begin{aligned} & \min_{\boldsymbol x} \frac{1}{2} \left \Vert \boldsymbol x - \boldsymbol g \right \Vert^2 \\ \text{subject to} & \\ & x_i \leq 0, \ \ \ \ i = 1, \cdots, N-K \\ & \boldsymbol 1^T \boldsymbol x =0 \end{aligned} subject toxmin21xg2xi0,    i=1,,NK1Tx=0

亦可以等价为

min ⁡ x 1 2 ∥ x − g ∥ 2 subject to e i T x ≤ 0 , i = 1 , ⋯ , N − K 1 T x = 0 \begin{aligned} & \min_{\boldsymbol x} \frac{1}{2} \left \Vert \boldsymbol x - \boldsymbol g \right \Vert^2 \\ \text{subject to} & \\ & \boldsymbol e^T_i \boldsymbol x \leq 0, \ \ \ \ i = 1, \cdots, N-K \\ & \boldsymbol 1^T \boldsymbol x =0 \end{aligned} subject toxmin21xg2eiTx0,    i=1,,NK1Tx=0

上述问题是一个凸优化问题(满足强对偶性),我们可以借助拉格朗日方法进行求解。

优化问题求解

我们定义上述优化问题的拉格朗日函数,即 L : R N × R N − K × R → R L: \mathbb R^ N \times \mathbb R^{N-K} \times \mathbb R \rightarrow \mathbb R L:RN×RNK×RR
L ( x , λ , ν ) = 1 2 ∥ x − g ∥ 2 + ∑ i = 1 N − K λ i e i T x + ν 1 T x L(\boldsymbol x, \boldsymbol \lambda, \nu) = \frac{1}{2} \left \Vert \boldsymbol x - \boldsymbol g \right \Vert^2 + \sum_{i=1}^{N-K} \lambda_i \boldsymbol e^T_i \boldsymbol x + \nu \boldsymbol 1^T \boldsymbol x L(x,λ,ν)=21xg2+i=1NKλieiTx+ν1Tx

因为 L ( x , λ , ν ) L(\boldsymbol x, \boldsymbol \lambda, \nu) L(x,λ,ν)关于 x \boldsymbol x x是凸的,所以我们对 L L L求一阶导,得到
∇ x L = x − g + ∑ i = 1 N − K λ i e i + ν 1 \nabla_x L= \boldsymbol x -\boldsymbol g + \sum_{i=1}^{N-K} \lambda_i \boldsymbol e_i + \nu \boldsymbol 1 xL=xg+i=1NKλiei+ν1

因此,当 x = g − ∑ i = 1 N − K λ i e i − ν 1 \boldsymbol x = \boldsymbol g - \sum_{i=1}^{N-K} \lambda_i \boldsymbol e_i - \nu \boldsymbol 1 x=gi=1NKλieiν1 L L L可以取最小值,进一步可以得到对偶函数
h ( λ , ν ) = inf ⁡ x ∈ R N L ( x , λ , ν ) = L ( x , λ , ν ) ∣ x = g − ∑ i = 1 N − K λ i e i − ν 1 = 1 2 ∥ ∑ i = 1 N − K λ i e i + ν 1 ∥ 2 + ( ∑ i = 1 N − K λ i e i T ) ( g − ∑ i = 1 N − K λ i e i − ν 1 ) + ν 1 T ( g − ∑ i = 1 N − K λ i e i − ν 1 ) = 1 2 ( ∥ λ ∥ 2 + N ν 2 + 2 ν 1 T ( ∑ i = 1 N − K λ i e i ) ) + ( ∑ i = 1 N − K λ i e i T ) g − ∥ λ ∥ 2 − ν 1 T ( ∑ i = 1 N − K λ i e i ) + ν 1 T g − ν 1 T ( ∑ i = 1 N − K λ i e i ) − N ν 2 = − 1 2 ∥ λ ∥ 2 + ( ∑ i = 1 N − K λ i e i T ) g − 1 2 N ν 2 − ν 1 T ( ∑ i = 1 N − K λ i e i ) + ν 1 T g = − 1 2 ∥ λ ∥ 2 + ( ∑ i = 1 N − K λ i e i T ) g − 1 2 ν ( N ν + 2 ⋅ 1 T ( ∑ i = 1 N − K λ i e i ) − 2 ⋅ 1 T g ) \begin{aligned} h(\boldsymbol \lambda, \nu) &= \inf_{x \in \mathbb R^N} L(\boldsymbol x, \boldsymbol \lambda, \nu) \\ &= L(\boldsymbol x, \boldsymbol \lambda, \nu)|_{\boldsymbol x = \boldsymbol g - \sum_{i=1}^{N-K} \lambda_i \boldsymbol e_i - \nu \boldsymbol 1} \\ &= \frac{1}{2} \left \Vert \sum_{i=1}^{N-K} \lambda_i \boldsymbol e_i + \nu \boldsymbol 1 \right \Vert^2 + \left ( \sum_{i=1}^{N-K} \lambda_i \boldsymbol e^T_i \right) \left( \boldsymbol g - \sum_{i=1}^{N-K} \lambda_i \boldsymbol e_i - \nu \boldsymbol 1 \right) \\ & \ \ \ \ \ \ + \nu \boldsymbol 1^T \left( \boldsymbol g - \sum_{i=1}^{N-K} \lambda_i \boldsymbol e_i - \nu \boldsymbol 1 \right) \\ & = \frac{1}{2} \left( \Vert \boldsymbol \lambda \Vert^2 + N \nu^2 + 2 \nu \boldsymbol 1^T \left ( \sum_{i=1}^{N-K} \lambda_i \boldsymbol e_i \right) \right) + \left ( \sum_{i=1}^{N-K} \lambda_i \boldsymbol e^T_i \right) \boldsymbol g - \Vert \boldsymbol \lambda \Vert^2 - \nu \boldsymbol 1^T \left ( \sum_{i=1}^{N-K} \lambda_i \boldsymbol e_i \right) \\ & \ \ \ \ \ \ + \nu \boldsymbol 1^T \boldsymbol g - \nu \boldsymbol 1^T \left ( \sum_{i=1}^{N-K} \lambda_i \boldsymbol e_i \right) - N \nu^2 \\ &= -\frac{1}{2} \Vert \boldsymbol \lambda \Vert^2 + \left ( \sum_{i=1}^{N-K} \lambda_i \boldsymbol e^T_i \right) \boldsymbol g -\frac{1}{2}N \nu^2 - \nu \boldsymbol 1^T \left ( \sum_{i=1}^{N-K} \lambda_i \boldsymbol e_i \right) + \nu \boldsymbol 1^T \boldsymbol g \\ & = -\frac{1}{2} \Vert \boldsymbol \lambda \Vert^2 + \left ( \sum_{i=1}^{N-K} \lambda_i \boldsymbol e^T_i \right) \boldsymbol g - \frac{1}{2} \nu \left( N \nu + 2\cdot \boldsymbol 1^T \left ( \sum_{i=1}^{N-K} \lambda_i \boldsymbol e_i \right) - 2 \cdot \boldsymbol 1^T \boldsymbol g \right) \end{aligned} h(λ,ν)=xRNinfL(x,λ,ν)=L(x,λ,ν)x=gi=1NKλieiν1=21 i=1NKλiei+ν1 2+(i=1NKλieiT)(gi=1NKλieiν1)      +ν1T(gi=1NKλieiν1)=21(λ2+Nν2+2ν1T(i=1NKλiei))+(i=1NKλieiT)gλ2ν1T(i=1NKλiei)      +ν1Tgν1T(i=1NKλiei)Nν2=21λ2+(i=1NKλieiT)g21Nν2ν1T(i=1NKλiei)+ν1Tg=21λ2+(i=1NKλieiT)g21ν(Nν+21T(i=1NKλiei)21Tg)

又因为 1 T x = 0 \boldsymbol 1^T \boldsymbol x =0 1Tx=0,我们有
1 T ( g − ∑ i = 1 N − K λ i e i − ν 1 ) = 0 ⟹ N ν = 1 T g − 1 T ( ∑ i = 1 N − K λ i e i ) \begin{aligned} & \boldsymbol 1^T \left( \boldsymbol g - \sum_{i=1}^{N-K} \lambda_i \boldsymbol e_i - \nu \boldsymbol 1 \right) = 0 \\ \Longrightarrow & N \nu = \boldsymbol 1^T \boldsymbol g - \boldsymbol 1^T \left ( \sum_{i=1}^{N-K} \lambda_i \boldsymbol e_i \right) \end{aligned} 1T(gi=1NKλieiν1)=0Nν=1Tg1T(i=1NKλiei)

因此,对偶函数 h ( λ , ν ) h(\boldsymbol \lambda, \nu) h(λ,ν)可以继续化简为
h ( λ ) = − 1 2 ∥ λ ∥ 2 + ( ∑ i = 1 N − K λ i e i T ) g − 1 2 1 T g − 1 T ( ∑ i = 1 N − K λ i e i ) N ( 1 T ( ∑ i = 1 N − K λ i e i ) − 1 T g ) = − 1 2 ∥ λ ∥ 2 + ( ∑ i = 1 N − K λ i e i T ) g + 1 2 N ( 1 T ( ∑ i = 1 N − K λ i e i ) − 1 T g ) 2 = − 1 2 ∥ λ ∥ 2 + g 1 : N − K T λ + 1 2 N ( λ T 1 N − K − 1 N T g ) 2 = − 1 2 ∥ λ ∥ 2 + g 1 : N − K T λ + 1 2 N ( λ T 1 N − K 1 N − K T λ − 2 g T 1 N 1 N − K T λ + ∣ 1 N T g ∣ 2 ) = − 1 2 λ T ( I − 1 N 1 N − K 1 N − K T ) λ + ( g 1 : N − K T − g T 1 N 1 N 1 N − K T ) λ + 1 2 N ∣ 1 N T g ∣ 2 = − 1 2 λ T ( I − 1 N 1 N − K 1 N − K T ) λ + ( g 1 : N − K T ( I − 1 N 1 N − K 1 N − K T ) − g N − K + 1 : N T 1 N 1 K 1 N − K T ) λ + 1 2 N ∣ 1 N T g ∣ 2 \begin{aligned} h(\boldsymbol \lambda) &= -\frac{1}{2} \Vert \boldsymbol \lambda \Vert^2 + \left ( \sum_{i=1}^{N-K} \lambda_i \boldsymbol e^T_i \right) \boldsymbol g - \frac{1}{2} \frac{ \boldsymbol 1^T \boldsymbol g - \boldsymbol 1^T \left ( \sum_{i=1}^{N-K} \lambda_i \boldsymbol e_i \right)}{N} \left( \boldsymbol 1^T \left ( \sum_{i=1}^{N-K} \lambda_i \boldsymbol e_i \right) - \boldsymbol 1^T \boldsymbol g \right) \\ &= -\frac{1}{2} \Vert \boldsymbol \lambda \Vert^2 + \left ( \sum_{i=1}^{N-K} \lambda_i \boldsymbol e^T_i \right) \boldsymbol g + \frac{1}{2N} \left( \boldsymbol 1^T \left ( \sum_{i=1}^{N-K} \lambda_i \boldsymbol e_i \right) - \boldsymbol 1^T \boldsymbol g \right)^2 \\ & = -\frac{1}{2} \Vert \boldsymbol \lambda \Vert^2 + \boldsymbol g_{1:N-K}^T \boldsymbol \lambda + \frac{1}{2N} \left( \boldsymbol \lambda^T \boldsymbol 1_{N-K} - \boldsymbol 1^T_N \boldsymbol g \right)^2 \\ &= -\frac{1}{2} \Vert \boldsymbol \lambda \Vert^2 + \boldsymbol g_{1:N-K}^T \boldsymbol \lambda + \frac{1}{2N} \left( \boldsymbol \lambda^T \boldsymbol 1_{N-K} \boldsymbol 1_{N-K}^T \boldsymbol \lambda - 2 \boldsymbol g^T \boldsymbol 1_N \boldsymbol 1^T_{N-K} \boldsymbol \lambda + |\boldsymbol 1^T_N \boldsymbol g|^2\right) \\ &= -\frac{1}{2} \boldsymbol \lambda^T \left( \boldsymbol I - \frac{1}{N} \boldsymbol 1_{N-K} \boldsymbol 1^T_{N-K} \right) \boldsymbol \lambda + \left( \boldsymbol g_{1:N-K}^T -\boldsymbol g^T \frac{1}{N} \boldsymbol 1_N \boldsymbol 1^T_{N-K} \right )\boldsymbol \lambda + \frac{1}{2N} |\boldsymbol 1^T_N \boldsymbol g|^2 \\ & = -\frac{1}{2} \boldsymbol \lambda^T \left( \boldsymbol I - \frac{1}{N} \boldsymbol 1_{N-K} \boldsymbol 1^T_{N-K} \right) \boldsymbol \lambda + \left( \boldsymbol g_{1:N-K}^T \left( \boldsymbol I - \frac{1}{N} \boldsymbol 1_{N-K} \boldsymbol 1^T_{N-K} \right) - \boldsymbol g_{N-K+1:N}^T \frac{1}{N} \boldsymbol 1_{K} \boldsymbol 1^T_{N-K} \right) \boldsymbol \lambda \\ & \ \ \ \ \ \ + \frac{1}{2N} |\boldsymbol 1^T_N \boldsymbol g|^2 \end{aligned} h(λ)=21λ2+(i=1NKλieiT)g21N1Tg1T(i=1NKλiei)(1T(i=1NKλiei)1Tg)=21λ2+(i=1NKλieiT)g+2N1(1T(i=1NKλiei)1Tg)2=21λ2+g1:NKTλ+2N1(λT1NK1NTg)2=21λ2+g1:NKTλ+2N1(λT1NK1NKTλ2gT1N1NKTλ+1NTg2)=21λT(IN11NK1NKT)λ+(g1:NKTgTN11N1NKT)λ+2N11NTg2=21λT(IN11NK1NKT)λ+(g1:NKT(IN11NK1NKT)gNK+1:NTN11K1NKT)λ      +2N11NTg2

B = I − 1 N 1 N − K 1 N − K T ∈ R ( N − K ) × ( N − K ) \boldsymbol B = \boldsymbol I - \frac{1}{N} \boldsymbol 1_{N-K} \boldsymbol 1^T_{N-K} \in \mathbb R^{(N-K) \times (N-K)} B=IN11NK1NKTR(NK)×(NK), C = 1 K 1 N − K T ∈ R K × ( N − K ) \boldsymbol C= \boldsymbol 1_{K} \boldsymbol 1^T_{N-K} \in \mathbb R^{K \times (N-K)} C=1K1NKTRK×(NK),则 h ( λ ) : R N − K → R h(\boldsymbol \lambda): \mathbb R^{N-K} \rightarrow \mathbb R h(λ):RNKR可以写为
h ( λ ) = − 1 2 λ T B λ + g 1 : N − K T B λ − 1 N g N − K + 1 : N T C λ + 1 2 N ∣ 1 N T g ∣ 2 \begin{aligned} h(\boldsymbol \lambda) &= -\frac{1}{2} \boldsymbol \lambda^T \boldsymbol B \boldsymbol \lambda + \boldsymbol g_{1:N-K}^T \boldsymbol B \boldsymbol \lambda - \frac{1}{N} \boldsymbol g_{N-K+1:N}^T \boldsymbol C \boldsymbol \lambda + \frac{1}{2N} |\boldsymbol 1^T_N \boldsymbol g|^2 \end{aligned} h(λ)=21λTBλ+g1:NKTBλN1gNK+1:NTCλ+2N11NTg2

最终,我们可以把对偶问题写为:

max ⁡ λ ∈ R N − K − 1 2 λ T B λ + g 1 : N − K T B λ − 1 N g N − K + 1 : N T C λ + 1 2 N ∣ 1 N T g ∣ 2 subject to λ ≥ 0 \begin{aligned} & \max_{\boldsymbol \lambda \in \mathbb R^{N-K}} -\frac{1}{2} \boldsymbol \lambda^T \boldsymbol B \boldsymbol \lambda + \boldsymbol g_{1:N-K}^T \boldsymbol B \boldsymbol \lambda - \frac{1}{N} \boldsymbol g_{N-K+1:N}^T \boldsymbol C \boldsymbol \lambda + \frac{1}{2N} |\boldsymbol 1^T_N \boldsymbol g|^2 \\ \text{subject to} & \\ & \boldsymbol \lambda \geq 0 \end{aligned} subject toλRNKmax21λTBλ+g1:NKTBλN1gNK+1:NTCλ+2N11NTg2λ0

进一步,我们分析矩阵 B \boldsymbol B B C \boldsymbol C C的相关性质。令 ϵ = K / N \epsilon = K/N ϵ=K/N q 1 = 1 N − K \boldsymbol q_1 = \frac{1}{\sqrt{N-K}} q1=NK 1 B \boldsymbol B B可以写为
B = I − 1 N 1 N − K 1 N − K T = I − ( 1 − ϵ ) q 1 q 1 T \begin{aligned} \boldsymbol B & = \boldsymbol I - \frac{1}{N} \boldsymbol 1_{N-K} \boldsymbol 1^T_{N-K} \\ &=\boldsymbol I - (1-\epsilon) \boldsymbol q_1 \boldsymbol q_1^T \end{aligned} B=IN11NK1NKT=I(1ϵ)q1q1T

  • B 2 = I − ( 1 − ϵ 2 ) q 1 q 1 T \boldsymbol B^{2} = \boldsymbol I - (1-{\epsilon}^2) \boldsymbol q_1 \boldsymbol q_1^T B2=I(1ϵ2)q1q1T
  • B − 1 = I − ( 1 − 1 ϵ ) q 1 q 1 T \boldsymbol B^{-1} = \boldsymbol I - (1-\frac{1}{\epsilon}) \boldsymbol q_1 \boldsymbol q_1^T B1=I(1ϵ1)q1q1T
  • B 1 2 = I − ( 1 − ϵ ) q 1 q 1 T \boldsymbol B^{\frac{1}{2}} = \boldsymbol I - (1-\sqrt{\epsilon}) \boldsymbol q_1 \boldsymbol q_1^T B21=I(1ϵ )q1q1T
  • B − 1 2 = I − ( 1 − 1 ϵ ) q 1 q 1 T \boldsymbol B^{-\frac{1}{2}} = \boldsymbol I - (1-\frac{1}{\sqrt{\epsilon}}) \boldsymbol q_1 \boldsymbol q_1^T B21=I(1ϵ 1)q1q1T

因为 C \boldsymbol C C是一个 K × ( N − K ) K \times (N-K) K×(NK)的全1矩阵,我们可以得到
B C T = ( 1 − ϵ ) C T B − 1 2 C T = ( 1 + 1 1 + 1 ϵ ) C T \begin{aligned} \boldsymbol {BC}^T = (1-\epsilon) \boldsymbol C^T \\ \boldsymbol B^{-\frac{1}{2}} \boldsymbol {C}^T = (1 + \frac{1}{1+ \frac{1}{\sqrt{ \epsilon}}}) \boldsymbol C^T \end{aligned} BCT=(1ϵ)CTB21CT=(1+1+ϵ 11)CT

尝试
∇ λ h = − B 1 2 λ + B g 1 : N − K − 1 N C T g N − K + 1 : N = − B 1 2 λ + [ B , − 1 N C T ] g \begin{aligned} \nabla_{\boldsymbol \lambda}h &= - \boldsymbol B^{\frac{1}{2}} \boldsymbol \lambda + \boldsymbol B \boldsymbol g_{1:N-K} - \frac{1}{N} \boldsymbol C^T \boldsymbol g_{N-K+1:N} \\ &= - \boldsymbol B^{\frac{1}{2}} \boldsymbol \lambda + \left[ \boldsymbol B, -\frac{1}{N} \boldsymbol C^T \right] \boldsymbol g \end{aligned} λh=B21λ+Bg1:NKN1CTgNK+1:N=B21λ+[B,N1CT]g

如果令 ∇ λ h = 0 \nabla_{\boldsymbol \lambda}h=0 λh=0,则
λ = B − 1 2 [ B , − 1 N C T ] g = [ B − 1 2 , − 1 N B − 1 2 C T ] g = [ B − 1 2 , − 1 N ( 1 + 1 1 + 1 ϵ ) C T ] g \begin{aligned} \boldsymbol \lambda &= \boldsymbol B^{-\frac{1}{2}} \left[ \boldsymbol B, -\frac{1}{N} \boldsymbol C^T \right] \boldsymbol g \\ &= \left[ \boldsymbol B^{-\frac{1}{2}}, -\frac{1}{N} \boldsymbol B^{-\frac{1}{2}} \boldsymbol C^T \right] \boldsymbol g \\ &= \left[ \boldsymbol B^{-\frac{1}{2}}, -\frac{1}{N}(1 + \frac{1}{1+ \frac{1}{\sqrt{ \epsilon}}}) \boldsymbol C^T \right] \boldsymbol g \end{aligned} λ=B21[B,N1CT]g=[B21,N1B21CT]g=[B21,N1(1+1+ϵ 11)CT]g

因为 g ∼ N ( 0 , I N ) \boldsymbol g \sim \mathcal N(\boldsymbol 0, \boldsymbol I_N) gN(0,IN),令 κ ( ϵ ) = ( 1 + 1 1 + 1 ϵ ) \kappa(\epsilon)=(1 + \frac{1}{1+ \frac{1}{\sqrt{ \epsilon}}}) κ(ϵ)=(1+1+ϵ 11),我们可以计算得到 λ \boldsymbol \lambda λ的协方差矩阵
Σ λ = [ B − 1 2 , − 1 N κ ( ϵ ) C T ] [ B − 1 2 , − 1 N κ ( ϵ ) C T ] T = B − 1 + 1 N 2 κ ( ϵ ) 2 C T C = B − 1 + 1 N 2 κ ( ϵ ) 2 1 N − K 1 K T 1 K 1 N − K T = B − 1 + κ ( ϵ ) 2 K ( N − K ) N 2 1 N − K ( N − K ) 1 N − K T ( N − K ) = B − 1 + κ ( ϵ ) 2 ϵ ( 1 − ϵ ) 1 N − K ( N − K ) 1 N − K T ( N − K ) = I N − K − ( 1 − 1 ϵ − ϵ ( 1 − ϵ ) κ 2 ( ϵ ) ) q 1 q 1 T \begin{aligned} \boldsymbol \Sigma_{\boldsymbol \lambda} &= \left[ \boldsymbol B^{-\frac{1}{2}}, -\frac{1}{N} \kappa(\epsilon) \boldsymbol C^T \right] \left[ \boldsymbol B^{-\frac{1}{2}}, -\frac{1}{N} \kappa(\epsilon) \boldsymbol C^T \right]^T \\ &= \boldsymbol B^{-1} + \frac{1}{N^2} \kappa(\epsilon)^2 \boldsymbol C^T \boldsymbol C \\ &= \boldsymbol B^{-1} + \frac{1}{N^2} \kappa(\epsilon)^2 \boldsymbol 1_{N-K} \boldsymbol 1_{K}^T \boldsymbol 1_{K} \boldsymbol 1^T_{N-K} \\ & = \boldsymbol B^{-1} + \kappa(\epsilon)^2 \frac{K(N-K)}{N^2} \frac{\boldsymbol 1_{N-K}}{\sqrt(N-K)} \frac{\boldsymbol 1^T_{N-K}}{\sqrt(N-K)} \\ & = \boldsymbol B^{-1} + \kappa(\epsilon)^2 \epsilon(1-\epsilon) \frac{\boldsymbol 1_{N-K}}{\sqrt(N-K)} \frac{\boldsymbol 1^T_{N-K}}{\sqrt(N-K)} \\ & = \boldsymbol I_{N-K} -\left( 1 - \frac{1}{\epsilon} - \epsilon (1- \epsilon ) \kappa^2(\epsilon) \right ) \boldsymbol q_1 \boldsymbol q^T_1 \end{aligned} Σλ=[B21,N1κ(ϵ)CT][B21,N1κ(ϵ)CT]T=B1+N21κ(ϵ)2CTC=B1+N21κ(ϵ)21NK1KT1K1NKT=B1+κ(ϵ)2N2K(NK)( NK)1NK( NK)1NKT=B1+κ(ϵ)2ϵ(1ϵ)( NK)1NK( NK)1NKT=INK(1ϵ1ϵ(1ϵ)κ2(ϵ))q1q1T

原问题:
min ⁡ x 1 2 ∥ x − g ∥ 2 subject to e i T x ≤ 0 , i = 1 , ⋯ , N − K 1 T x = 0 \begin{aligned} & \min_{\boldsymbol x} \frac{1}{2} \left \Vert \boldsymbol x - \boldsymbol g \right \Vert^2 \\ \text{subject to} & \\ & \boldsymbol e^T_i \boldsymbol x \leq 0, \ \ \ \ i = 1, \cdots, N-K \\ & \boldsymbol 1^T \boldsymbol x =0 \end{aligned} subject toxmin21xg2eiTx0,    i=1,,NK1Tx=0

对偶问题:
max ⁡ λ ∈ R N − K − 1 2 λ T B λ + g 1 : N − K T B λ − 1 N g N − K + 1 : N T C λ + 1 2 N ∣ 1 N T g ∣ 2 subject to λ ≥ 0 \begin{aligned} & \max_{\boldsymbol \lambda \in \mathbb R^{N-K}} -\frac{1}{2} \boldsymbol \lambda^T \boldsymbol B \boldsymbol \lambda + \boldsymbol g_{1:N-K}^T \boldsymbol B \boldsymbol \lambda - \frac{1}{N} \boldsymbol g_{N-K+1:N}^T \boldsymbol C \boldsymbol \lambda + \frac{1}{2N} |\boldsymbol 1^T_N \boldsymbol g|^2 \\ \text{subject to} & \\ & \boldsymbol \lambda \geq 0 \end{aligned} subject toλRNKmax21λTBλ+g1:NKTBλN1gNK+1:NTCλ+2N11NTg2λ0

这篇关于distance to convex cone的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/830199

相关文章

[LeetCode] 863. All Nodes Distance K in Binary Tree

题:https://leetcode.com/problems/all-nodes-distance-k-in-binary-tree/ 题目大意 求给树中,距给定 结点 指定长度的 所有结点的val 思路 tree -> graph 、 bfs 先遍历树,并用map记录每个结点的父结点 ,将树变为图,然后 bfs。 /*** Definition for a binary tree

【HDU】5102 The K-th Distance bfs

传送门:【HDU】5102 The K-th Distance 题目分析:思路秒出,5101写完不到20分钟这题就AC了。。将所有点扔进队列中,记录前驱,步数,每次扩展的时候不走前驱,这样就相当于n棵树同时在扩展。注意到一条路径会被重复走两次,所以k*2,ans/2。注意姿势不对就会MLE。 代码如下: #include <map>#include <vector>

【codechef】 Prime Distance On Tree【求树上路经长度为i的路径条数】【点分治+FFT】

传送门:【codechef】 Prime Distance On Tree 点分治+FFT水题……竟然n*n爆int没发现…… 而且NTT TLE,FFT跑的超级快…… my  code: my~~code: #include <bits/stdc++.h>using namespace std ;typedef long long LL ;#define clr( a , x ) m

【Derivation】Convex Optimization

Separation theorems and supporting hyperplanes(分离定理与支撑超平面)        Inner and outer polyhedral approximations.(内部与外部多面体逼近)        Let C belongs to Rn be a closed convex set.and suppose that x1,...xk a

Shortest Distance to a Character

Given a string S and a character C, return an array of integers representing the shortest distance from the character C in the string. Example 1: Input: S = "loveleetcode", C = 'e'Output: [3, 2, 1,

Signed distance fields (SDFs) and Truncated Signed Distance Field(TSDF)

1. Signed distance fields (SDFs) 笔记来源: [1] Signed distance fields (SDFs) [2] Signed Distance Function (SDF): Implicit curves or surfaces [3] Ray Marching and Signed Distance Functions [4] Truncated S

度量学习(Distance Metric Learning)介绍

原文:度量学习(Distance Metric Learning)介绍 http://blog.csdn.net/lzt1983/article/details/7884553 一直以来都想写一篇metric learning(DML)的综述文章,对DML的意义、方法论和经典论文做一个介绍,同时对我的研究经历和思考做一个总结。可惜一直没有把握自己能够写好,因此拖到现在。

最小编辑距离 | Minimum Edit Distance

关于两个字符串s1,s2的差别,可以通过计算他们的最小编辑距离来决定。 设A、B为两个字符串,狭义的编辑距离定义为把A转换成B需要的最少删除(删除A中一个字符)、插入(在A中插入一个字符)和替换(把A中的某个字符替换成另一个字符)的次数,用ED(A,B)来表示。直观来说,两个串互相转换需要经过的步骤越多,差异越大。 对于编辑距离的状态转移较为难想。 正确的思路应当是将s1的前i位数据转换成s

【PAT】【Advanced Level】1046. Shortest Distance (20)

1046. Shortest Distance (20) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue The task is really simple: given N exits on a highway which forms a si

POJ 2689 Prime Distance(大区间素数筛法,两次筛法)

题目链接:http://poj.org/problem?id=2689 题意:求一个区间 [L,U] 内的差值最大的和差值最小的相邻素数对。(1<=L< U<=2,147,483,647),区间长度U-L<=1000000 题解: 维基百科:埃拉托斯特尼筛法 单纯打表是不行的,L,U的