基于爬虫对山西省人口采集+机器学习的可视化平台

2024-03-20 14:28

本文主要是介绍基于爬虫对山西省人口采集+机器学习的可视化平台,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 数据来源
  • 一、研究背景与意义
  • 二、研究目标
  • 三、研究内容与方法
  • 四、预期成果
  • 五、代码讲解
  • 六、全文总结


数据来源

1.所有原数据均来自:国家统计局-政府的数据网站
2.涉及到的一些预测数据是根据现有数据进行预测而来。

本文从数据来源,研究意义,研究内容目标方法等以及代码进行展开描述。

在这里插入图片描述

一、研究背景与意义

随着信息技术的飞速发展,数据已成为推动社会进步的重要资源。国家统计局作为官方数据的权威发布机构,其发布的人口数据对于政府决策、学术研究以及商业分析等方面具有重要意义。然而,这些数据通常以静态报表的形式存在,不易于普通用户快速理解和使用。因此,本研究旨在通过爬虫技术自动化采集人口数据,并结合机器学习算法对数据进行分析,最终通过可视化平台将分析结果直观展现,以提高数据的可访问性和使用价值。

二、研究目标

开发一个自动化的爬虫系统,用于定期从国家统计局网站采集最新的人口数据。
利用机器学习算法对采集到的数据进行深入分析,挖掘潜在的趋势和模式。
设计并实现一个用户友好的可视化平台,将分析结果以图表、图形等形式直观展示。
通过平台,提供数据查询、分析和预测等功能,满足不同用户的需求。

三、研究内容与方法

爬虫系统开发:研究并选择合适的编程语言和框架,开发能够自动抓取、解析和存储国家统计局人口数据的爬虫系统。
数据预处理:对采集到的原始数据进行清洗、转换和整合,以便于后续的机器学习分析。
机器学习分析:选择合适的机器学习模型,如时间序列分析、聚类分析等,对数据进行深入分析。
可视化平台设计:flask 作为服务端设计用户界面,实现数据的动态可视化展示,并提供交互式查询和分析功能。

文献调研:通过查阅相关文献,了解当前人口数据分析的前沿技术和发展趋势。
技术选型:对比不同的爬虫框架、机器学习库和可视化工具,选择最适合本项目的技术栈。
系统开发:采用敏捷开发方法,分阶段实现爬虫系统、数据分析模块和可视化平台。
测试与优化:对系统进行功能测试和性能测试,根据测试结果进行优化调整。

四、预期成果

成功开发出能够自动采集国家统计局人口数据的爬虫系统。
构建出能够有效分析人口数据的机器学习模型,并能够准确预测未来趋势。
实现一个功能完善、操作简便的人口数据可视化平台,为用户提供高质量的数据服务。
发表相关研究论文,分享研究成果和经验。

五、代码讲解

1.启动服务端代码
在这里插入图片描述
2.数据采集代码

    url = 'easyquery.htm?m=QueryData&dbcode=fsnd&rowcode=zb&colcode=sj&wds=%5B%7B%22wdcode%22%3A%22reg%22%2C%22valuecode%22%3A%22140000%22%7D%5D&dfwds=%5B%7B%22wdcode%22%3A%22zb%22%2C%22valuecode%22%3A%22A0302%22%7D%5D&k1=1682410901096&h=1'  #session = requests.Session()head = {'Content-Type': 'application/x-www-form-urlencoded;charset=UTF-8','Connection': 'close','Content-Length': '0'}tex = session.post(url, headers=head, verify=False).json()nr1 = tex['returndata']['datanodes'][:10]nr2 = tex['returndata']['datanodes'][10:20]nr3 = tex['returndata']['datanodes'][20:30]years = []vals1 = []vals2 = []vals3 = []for i in nr1:val = i['data']['data']year = i['code'][-4:]years.append(year)vals1.append(val)for i in nr2:val = i['data']['data']year = i['code'][-4:]vals2.append(val)for i in nr3:val = i['data']['data']year = i['code'][-4:]vals3.append(val)df = pandas.DataFrame({'year': years,'出生率': vals1,'死亡率': vals2,'增长率': vals3})df.to_excel('data/山西省近十年人口死亡率、出生率、增长率.xlsx', index=None)cur, conn = sql.connect()sql.create(cur, conn)cur, conn = sql.connect()for index,item in enumerate(years):sql.insert(str(year),str(vals1[index]),  str(vals2[index]),str(vals3[index]),cur,conn)sql.close(cur,conn)print('山西省近十年人口死亡率爬取完毕')

3.大屏可视化代码在这里插入图片描述

4.预测人口代码

def predict_sex(path):sex_data = pandas.read_excel('predict/山西未来10年男性女性人数预测.xlsx')year = sex_data['year']man_number = sex_data['男'].values.tolist()woman_number = sex_data['女'].values.tolist()years = []for item in year:years.append(str(item) + "年")c = (Bar(init_opts=opts.InitOpts(theme=ThemeType.WHITE)).add_xaxis(years).add_yaxis("男", man_number, stack="stack1").add_yaxis("女", woman_number, stack="stack1").set_series_opts(label_opts=opts.LabelOpts(is_show=False),).set_global_opts(title_opts=opts.TitleOpts(title="男女人数预测")))return c

六、全文总结

上述代码有任何问题,欢迎各位学者留言。

这篇关于基于爬虫对山西省人口采集+机器学习的可视化平台的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829747

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

如何解决线上平台抽佣高 线下门店客流少的痛点!

目前,许多传统零售店铺正遭遇客源下降的难题。尽管广告推广能带来一定的客流,但其费用昂贵。鉴于此,众多零售商纷纷选择加入像美团、饿了么和抖音这样的大型在线平台,但这些平台的高佣金率导致了利润的大幅缩水。在这样的市场环境下,商家之间的合作网络逐渐成为一种有效的解决方案,通过资源和客户基础的共享,实现共同的利益增长。 以最近在上海兴起的一个跨行业合作平台为例,该平台融合了环保消费积分系统,在短

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Android平台播放RTSP流的几种方案探究(VLC VS ExoPlayer VS SmartPlayer)

技术背景 好多开发者需要遴选Android平台RTSP直播播放器的时候,不知道如何选的好,本文针对常用的方案,做个大概的说明: 1. 使用VLC for Android VLC Media Player(VLC多媒体播放器),最初命名为VideoLAN客户端,是VideoLAN品牌产品,是VideoLAN计划的多媒体播放器。它支持众多音频与视频解码器及文件格式,并支持DVD影音光盘,VCD影