蓝桥杯练习题 最小方差生成树 (Kruskal MST 好题)

2024-03-20 14:18

本文主要是介绍蓝桥杯练习题 最小方差生成树 (Kruskal MST 好题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


 算法提高 最小方差生成树 

 时间限制:1.0s   内存限制:256.0MB


问题描述
给定带权无向图,求出一颗方差最小的生成树。

输入格式
输入多组测试数据。第一行为N,M,依次是点数和边数。接下来M行,每行三个整数U,V,W,代表连接U,V的边,和权值W。保证图连通。n=m=0标志着测试文件的结束。

输出格式
对于每组数据,输出最小方差,四舍五入到0.01。输出格式按照样例。

样例输入
4 5
1 2 1
2 3 2
3 4 2
4 1 1
2 4 3
4 6
1 2 1
2 3 2
3 4 3
4 1 1
2 4 3
1 3 3
0 0

样例输出
Case 1: 0.22
Case 2: 0.00

数据规模与约定

1<=U,V<=N<=50,N-1<=M<=1000,0<=W<=50。数据不超过5组。


题目分析:要求方差最小,就是要每条边(val - ave)^2的和最小,枚举所有边权和的可能值,多次kruskal求最小生成树,每次求的时候,以(val - ave)^2作为当前边的权值,如果该树的val和等于我们枚举的和,则修改ans的值,因为题目的数据量很小,复杂度大概为O(NWElogE)大概是1e7左右,基本可以接受


#include <cstdio>
#include <algorithm>
using namespace std;double const MAX = 10000000000000.0;
int n, m, tmp[1005], fa[55];
double ans;struct Edge
{int u, v;double w, val;
}e[1005];bool cmp(Edge a, Edge b)
{return a.w < b.w;
}void UF_set(int n)
{for(int i = 1; i <= n; i++)fa[i] = i;
}int Find(int x)
{return x == fa[x] ? x : fa[x] = Find(fa[x]);
}void Union(int a, int b)
{int r1 = Find(a);int r2 = Find(b);if(r1 != r2)fa[r2] = r1;
}void Kruskal(int sum)
{UF_set(n);int cnt = 0;double f_all = 0;double all = 0;double ave = sum * 1.0 / (n - 1);for(int i = 0; i < m; i++)e[i].w = (e[i].val - ave) * (e[i].val - ave);sort(e, e + m, cmp);for(int i = 0; i < m; i++){int u = e[i].u;int v = e[i].v;if(Find(u) != Find(v)){Union(u, v);f_all += e[i].w;all += e[i].val;cnt ++;}if(cnt == n - 1)break;}if((int)all == sum)ans = min(ans, f_all);
}int main()
{int ca = 1;while(scanf("%d %d", &n, &m) != EOF && (m + n)){// if(n == 1 || n == 2)// {//     printf("0.00\n");//     continue;// }int minv = 0;int maxv = 0;ans = MAX;for(int i = 0; i < m; i++){scanf("%d %d %lf", &e[i].u, &e[i].v, &e[i].val);tmp[i] = e[i].val;}sort(tmp, tmp + m);for(int i = 0; i < n - 1; i++)minv += tmp[i];for(int i = m - 1; i > m - n; i--)maxv += tmp[i];for(int i = minv; i <= maxv; i++)Kruskal(i);ans = ans / (n - 1);printf("Case %d: %.2f\n", ca++, ans);}
}




这篇关于蓝桥杯练习题 最小方差生成树 (Kruskal MST 好题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829722

相关文章

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

C/C++随机数生成的五种方法

《C/C++随机数生成的五种方法》C++作为一种古老的编程语言,其随机数生成的方法已经经历了多次的变革,早期的C++版本使用的是rand()函数和RAND_MAX常量,这种方法虽然简单,但并不总是提供... 目录C/C++ 随机数生成方法1. 使用 rand() 和 srand()2. 使用 <random

Flask 验证码自动生成的实现示例

《Flask验证码自动生成的实现示例》本文主要介绍了Flask验证码自动生成的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习... 目录生成图片以及结果处理验证码蓝图html页面展示想必验证码大家都有所了解,但是可以自己定义图片验证码

Python如何在Word中生成多种不同类型的图表

《Python如何在Word中生成多种不同类型的图表》Word文档中插入图表不仅能直观呈现数据,还能提升文档的可读性和专业性,本文将介绍如何使用Python在Word文档中创建和自定义各种图表,需要的... 目录在Word中创建柱形图在Word中创建条形图在Word中创建折线图在Word中创建饼图在Word

nginx生成自签名SSL证书配置HTTPS的实现

《nginx生成自签名SSL证书配置HTTPS的实现》本文主要介绍在Nginx中生成自签名SSL证书并配置HTTPS,包括安装Nginx、创建证书、配置证书以及测试访问,具有一定的参考价值,感兴趣的可... 目录一、安装nginx二、创建证书三、配置证书并验证四、测试一、安装nginxnginx必须有"-

Java实战之利用POI生成Excel图表

《Java实战之利用POI生成Excel图表》ApachePOI是Java生态中处理Office文档的核心工具,这篇文章主要为大家详细介绍了如何在Excel中创建折线图,柱状图,饼图等常见图表,需要的... 目录一、环境配置与依赖管理二、数据源准备与工作表构建三、图表生成核心步骤1. 折线图(Line Ch

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje