HDU 5251 矩形面积 (最小矩形覆盖 凸包+旋转卡壳 详解 推荐)

2024-03-20 13:08

本文主要是介绍HDU 5251 矩形面积 (最小矩形覆盖 凸包+旋转卡壳 详解 推荐),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

矩形面积

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 408    Accepted Submission(s): 232


Problem Description
小度熊有一个桌面,小度熊剪了很多矩形放在桌面上,小度熊想知道能把这些矩形包围起来的面积最小的矩形的面积是多少。
 
Input
第一行一个正整数 T,代表测试数据组数( 1T20 ),接下来 T 组测试数据。
每组测试数据占若干行,第一行一个正整数 N(1N<1000) ,代表矩形的数量。接下来 N 行,每行 8 个整数 x1,y1,x2,y2,x3,y3,x4,y4 ,代表矩形的四个点坐标,坐标绝对值不会超过10000。
 
Output
对于每组测试数据,输出两行:
第一行输出"Case #i:",i 代表第 i 组测试数据。
第二行包含1 个数字,代表面积最小的矩形的面积,结果保留到整数位。
 
Sample Input
  
2 2 5 10 5 8 3 10 3 8 8 8 8 6 7 8 7 6 1 0 0 2 2 2 0 0 2
 
Sample Output
  
Case #1: 17 Case #2: 4
 
Source
2015年百度之星程序设计大赛 - 初赛(1)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5251

题目分析:很明显就是求所有点围成的凸包的最小矩形覆盖,有一个结论(YY出来的),最小覆盖矩形必有一条边和凸包的一条边重合,graham扫描求出凸包,然后从左下的base点开始逆时针枚举边,用旋转卡壳求其余三边,距离下点向左向右向上分别的最远点,求的时候也按照逆时针的顺序,所以是下->右->上->左,求右点用点积最远的显然|a||b|cosθ的值最大,求上点用叉积,对踵点三角形面积最大,求左点和右点同理,一条边和三个点得到后就可以计算面积了,上点和枚举边的距离是当前覆盖矩形的一条边,这个很容易求,因为叉积算出的是平行四边形的面积,所以直接用叉积的结果除枚举边的边长L 即可,然后另一条覆盖矩形的边利用点积来求,设左点指向右点的向量为vt,将左点移动到枚举边的左端点处得到一个夹角A,由于覆盖矩形的第一条边和枚举边是垂直的,因此第二条边就是|vt|cosθ,因为向量的点积等于两个向量的模长积乘夹角的余弦值,即|vt|*L*cosθ = 点积 => |vt|cosθ = 点积 / L


#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
double const INF = 1e40;
int const MAX = 1e3 + 5;
int n, top;
double ans;struct POINT {int x, y;
}p[MAX << 2], stk[MAX << 2], base;double getDist(POINT p1, POINT p2) {return sqrt(1.0 * (p1.x - p2.x) * (p1.x - p2.x) + 1.0 * (p1.y - p2.y) * (p1.y - p2.y));
}int getCross(POINT p0, POINT p1, POINT p2) {return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y);
}int getDot(POINT p0, POINT p1, POINT p2) {return (p1.x - p0.x) * (p2.x - p0.x) + (p1.y - p0.y) * (p2.y - p0.y);
}bool cmp(POINT p1, POINT p2) {if (getCross(base, p1, p2) == 0) {return getDist(base, p1) < getDist(base, p2);}if (getCross(base, p1, p2) > 0) {return true;}return false;
}void getBase() {scanf("%d", &n);n = n << 2;scanf("%d %d", &p[0].x, &p[0].y);base.x = p[0].x;base.y = p[0].y;int pos = 0;for (int i = 1; i < n; i ++) {scanf("%d %d", &p[i].x, &p[i].y);if(p[i].y < base.y || (p[i].y == base.y && p[i].x < base.x)) {base.x = p[i].x;base.y = p[i].y;pos = i;}}swap(p[pos], p[0]);
}void getConvex() {sort(p, p + n, cmp);stk[0] = p[0];if (n == 1) {return;}stk[1] = p[1];top = 1;for (int i = 2; i < n; i ++) {while (top > 0 && getCross(stk[top - 1], stk[top], p[i]) <= 0) {top --;}stk[++ top] = p[i];}
}double solve() {ans = INF;int down, left = 0, right = 1, up = 0;stk[++ top] = stk[0];for (down = 0; down < top; down ++) {// find rightwhile (getDot(stk[down], stk[down + 1], stk[right]) <= getDot(stk[down], stk[down + 1], stk[right + 1])) {right = (right + 1) % top;}// find upif(down == 0) {up = right;}while (getCross(stk[down], stk[down + 1], stk[up]) <= getCross(stk[down], stk[down + 1], stk[up + 1])) {up = (up + 1) % top;}//find leftif (down == 0) {left = up;}while (getDot(stk[down], stk[down + 1], stk[left]) >= getDot(stk[down], stk[down + 1], stk[left + 1])) {left = (left + 1) % top;}double dist = getDist(stk[down], stk[down + 1]);double X = getCross(stk[down], stk[down + 1], stk[up]) / dist;POINT tmp;tmp.x = stk[right].x + stk[down].x - stk[left].x;tmp.y = stk[right].y + stk[down].y - stk[left].y;double Y = getDot(stk[down], stk[down + 1], tmp) / dist;ans = min(ans, X * Y);}return ans;
}int main() {int T;scanf("%d", &T);for (int ca = 1; ca <= T; ca ++) {printf("Case #%d:\n", ca);getBase();getConvex();printf("%.f\n", solve());}
}



这篇关于HDU 5251 矩形面积 (最小矩形覆盖 凸包+旋转卡壳 详解 推荐)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829544

相关文章

基于C++的UDP网络通信系统设计与实现详解

《基于C++的UDP网络通信系统设计与实现详解》在网络编程领域,UDP作为一种无连接的传输层协议,以其高效、低延迟的特性在实时性要求高的应用场景中占据重要地位,下面我们就来看看如何从零开始构建一个完整... 目录前言一、UDP服务器UdpServer.hpp1.1 基本框架设计1.2 初始化函数Init详解

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

Springboot配置文件相关语法及读取方式详解

《Springboot配置文件相关语法及读取方式详解》本文主要介绍了SpringBoot中的两种配置文件形式,即.properties文件和.yml/.yaml文件,详细讲解了这两种文件的语法和读取方... 目录配置文件的形式语法1、key-value形式2、数组形式读取方式1、通过@value注解2、通过

自定义注解SpringBoot防重复提交AOP方法详解

《自定义注解SpringBoot防重复提交AOP方法详解》该文章描述了一个防止重复提交的流程,通过HttpServletRequest对象获取请求信息,生成唯一标识,使用Redis分布式锁判断请求是否... 目录防重复提交流程引入依赖properties配置自定义注解切面Redis工具类controller

Python容器转换与共有函数举例详解

《Python容器转换与共有函数举例详解》Python容器是Python编程语言中非常基础且重要的概念,它们提供了数据的存储和组织方式,下面:本文主要介绍Python容器转换与共有函数的相关资料,... 目录python容器转换与共有函数详解一、容器类型概览二、容器类型转换1. 基本容器转换2. 高级转换示

HTML5的input标签的`type`属性值详解和代码示例

《HTML5的input标签的`type`属性值详解和代码示例》HTML5的`input`标签提供了多种`type`属性值,用于创建不同类型的输入控件,满足用户输入的多样化需求,从文本输入、密码输入、... 目录一、引言二、文本类输入类型2.1 text2.2 password2.3 textarea(严格

C++ move 的作用详解及陷阱最佳实践

《C++move的作用详解及陷阱最佳实践》文章详细介绍了C++中的`std::move`函数的作用,包括为什么需要它、它的本质、典型使用场景、以及一些常见陷阱和最佳实践,感兴趣的朋友跟随小编一起看... 目录C++ move 的作用详解一、一句话总结二、为什么需要 move?C++98/03 的痛点⚡C++

MySQL中between and的基本用法、范围查询示例详解

《MySQL中betweenand的基本用法、范围查询示例详解》BETWEENAND操作符在MySQL中用于选择在两个值之间的数据,包括边界值,它支持数值和日期类型,示例展示了如何使用BETWEEN... 目录一、between and语法二、使用示例2.1、betwphpeen and数值查询2.2、be

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Java中ArrayList与顺序表示例详解

《Java中ArrayList与顺序表示例详解》顺序表是在计算机内存中以数组的形式保存的线性表,是指用一组地址连续的存储单元依次存储数据元素的线性结构,:本文主要介绍Java中ArrayList与... 目录前言一、Java集合框架核心接口与分类ArrayList二、顺序表数据结构中的顺序表三、常用代码手动