luogu 1144 最短路计数 (堆优化Dijkstra)

2024-03-20 12:48

本文主要是介绍luogu 1144 最短路计数 (堆优化Dijkstra),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

给出一个N个顶点M条边的无向无权图,顶点编号为1-N。问从顶点1开始,到其他每个点的最短路有几条。

输入输出格式

输入格式:

第一行包含2个正整数N,M为图的顶点数与边数。

接下来M行,每行2个正整数x,y,表示有一条顶点x连向顶点y的边,请注意可能有自环与重边。

 

输出格式:

共N行,每行一个非负整数,第ii行输出从顶点1到顶点i有多少条不同的最短路,由于答案有可能会很大,你只需要输出ans mod 100003后的结果即可。如果无法到达顶点ii则输出0。

 

输入输出样例

输入样例#1:

5 7
1 2
1 3
2 4
3 4
2 3
4 5
4 5

输出样例#1:

1
1
1
2
4

说明

1到5的最短路有4条,分别为2条1-2-4-5和2条1-3-4-5(由于4−5的边有2条)。

对于20%的数据,N ≤ 100;

对于60%的数据,N ≤ 1000;

对于100%的数据,N<=1000000,M<=2000000。

题目链接:https://www.luogu.org/problemnew/show/P1144

题目分析:由于用链式前向星存边,对重边无需做特殊判断

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#include <map>
using namespace std;
int const MAXN = 1000005;
int const MAXM = 2000005;
int const INF = 0x3ffffff;
int const MOD = 100003;
int n, m, dis[MAXN], num[MAXN];
int cnt, head[MAXN];
bool vis[MAXN];
map<pair<int, int>, int> mp;
map<pair<int, int>, int>:: iterator it;struct EDGE {int to, w, nxt;
}e[MAXM << 1];void Init() {cnt = 0;memset(head, -1, sizeof(head));memset(vis, false, sizeof(vis));
}void Add(int u, int v) {e[cnt].to = v;e[cnt].w = 1;e[cnt].nxt = head[u];head[u] = cnt++;
}void HeapDijkstra(int v0) {priority_queue< pair<int, int>, vector< pair<int, int> >, greater< pair<int, int> > > q;for (int i = 1; i <= n; i++) {dis[i] = INF;}dis[v0] = 0;num[v0] = 1;q.push(make_pair(0, v0));while (!q.empty()) {int u = q.top().second;q.pop();if (!vis[u]) {vis[u] = true;for (int i = head[u]; i != -1; i = e[i].nxt) {int v = e[i].to;if (dis[v] == dis[u] + e[i].w) {num[v] += num[u];num[v] %= MOD;} else if (dis[v] > dis[u] + e[i].w) {dis[v] = dis[u] + e[i].w;q.push(make_pair(dis[v], v));num[v] = num[u];}}}}
}int main() {Init();scanf("%d %d", &n, &m);int u, v;for (int i = 0; i < m; i++) {scanf("%d %d", &u, &v);if (u == v) {continue;}Add(u, v);Add(v, u);}HeapDijkstra(1);for (int i = 1; i <= n; i++) {printf("%d\n", num[i] % MOD);}
}

 

这篇关于luogu 1144 最短路计数 (堆优化Dijkstra)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829509

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 1502 MPI Maelstrom(单源最短路dijkstra)

题目真是长得头疼,好多生词,给跪。 没啥好说的,英语大水逼。 借助字典尝试翻译了一下,水逼直译求不喷 Description: BIT他们的超级计算机最近交货了。(定语秀了一堆词汇那就省略吧再见) Valentine McKee的研究顾问Jack Swigert,要她来测试一下这个系统。 Valentine告诉Swigert:“因为阿波罗是一个分布式共享内存的机器,所以它的内存访问

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

uva 10801(乘电梯dijkstra)

题意: 给几个电梯,电梯0 ~ n-1分别可以到达很多层楼。 换乘电梯需要60s时间。 问从0层到target层最小的时间。 解析: 将进入第0层的电梯60s也算上,最后减。 坑点是如果target为0输出0。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algori

poj 3159 (spfa差分约束最短路) poj 1201

poj 3159: 题意: 每次给出b比a多不多于c个糖果,求n最多比1多多少个糖果。 解析: 差分约束。 这个博客讲差分约束讲的比较好: http://www.cnblogs.com/void/archive/2011/08/26/2153928.html 套个spfa。 代码: #include <iostream>#include <cstdio>#i

hdu 3790 (单源最短路dijkstra)

题意: 每条边都有长度d 和花费p,给你起点s 终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。 解析: 考察对dijkstra的理解。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstrin