LeetCode 229 Majority Element II (投票算法)

2024-03-20 12:18

本文主要是介绍LeetCode 229 Majority Element II (投票算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times.

Example 1:

Input: nums = [3,2,3]
Output: [3]

Example 2:

Input: nums = [1]
Output: [1]

Example 3:

Input: nums = [1,2]
Output: [1,2]

Constraints:

  • 1 <= nums.length <= 5 * 10^4
  • -10^9 <= nums[i] <= 10^9

Follow up: Could you solve the problem in linear time and in O(1) space?

题目链接:https://leetcode.com/problems/majority-element-ii/

题目大意:求频数超过n/3的数,要求O(1)空间,O(n)时间

题目分析:求频数最高的两个数字,然后判断这两个数字的频数是否超过n/3,求频数最高的两个数可以通过投票算法,大致思路:

设两个数为n1,n2,选票的相对值分别为c1,c2,注意这里记录的是相对值,不是绝对的频数,相对值可以理解为如果某次当前数字未被选中,则票数减1,选中则加1。若c1或c2为0则说明当前不存在票数明显多(频数高)的数字,则可以直接取当前数字继续往后累计票数

1ms,时间击败99.88%

class Solution {public List<Integer> majorityElement(int[] nums) {List<Integer> ans = new ArrayList<>();int c1 = 1, n1 = nums[0], c2 = 0, n2 = 0;for (int i = 1; i < nums.length; i++) {if (nums[i] == n1) {c1++;continue;}if (nums[i] == n2) {c2++;continue;}if (c1 == 0) {n1 = nums[i];c1 = 1;continue;}if (c2 == 0) {n2 = nums[i];c2 = 1;continue;}c1--;c2--;}c1 = 0;c2 = 0;for (int num : nums) {if (n1 == num) {c1++;} else if (n2 == num) {c2++;}}int minFreq = nums.length / 3; if (c1 > minFreq) {ans.add(n1);}if (c2 > minFreq) {ans.add(n2);}return ans;}
}

这篇关于LeetCode 229 Majority Element II (投票算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829420

相关文章

Vue项目中Element UI组件未注册的问题原因及解决方法

《Vue项目中ElementUI组件未注册的问题原因及解决方法》在Vue项目中使用ElementUI组件库时,开发者可能会遇到一些常见问题,例如组件未正确注册导致的警告或错误,本文将详细探讨这些问题... 目录引言一、问题背景1.1 错误信息分析1.2 问题原因二、解决方法2.1 全局引入 Element

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

element-ui下拉输入框+resetFields无法回显的问题解决

《element-ui下拉输入框+resetFields无法回显的问题解决》本文主要介绍了在使用ElementUI的下拉输入框时,点击重置按钮后输入框无法回显数据的问题,具有一定的参考价值,感兴趣的... 目录描述原因问题重现解决方案方法一方法二总结描述第一次进入页面,不做任何操作,点击重置按钮,再进行下

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO