目标检测——PP-PicoDet算法解读

2024-03-20 07:36

本文主要是介绍目标检测——PP-PicoDet算法解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PP-YOLO系列,均是基于百度自研PaddlePaddle深度学习框架发布的算法,2020年基于YOLOv3改进发布PP-YOLO,2021年发布PP-YOLOv2和移动端检测算法PP-PicoDet,2022年发布PP-YOLOE和PP-YOLOE-R。由于均是一个系列,所以放一起解读,方便对比前后改进地方。


PP-YOLO系列算法解读:

  • PP-YOLO算法解读
  • PP-YOLOv2算法解读
  • PP-PicoDet算法解读
  • PP-YOLOE算法解读
  • PP-YOLOE-R算法解读

YOLO系列算法解读:

  • YOLOv1通俗易懂版解读
  • SSD算法解读
  • YOLOv2算法解读
  • YOLOv3算法解读
  • YOLOv4算法解读
  • YOLOv5算法解读

文章目录

  • 1、算法概述
  • 2、PP-PicoDet细节
    • 2.1 Better Backbone
    • 2.2 CSPPAN and Detector Head
    • 2.3 Label Assignment Strategy and Loss
    • 2.4 Other Strategies
  • 3、实验
    • 3.1 消融实验
    • 3.2 与其他检测算法对比


PP-PicoDet(2021.11.1)

论文:PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices
作者:Guanghua Yu, Qinyao Chang, Wenyu Lv, Chang Xu, Cheng Cui, Wei Ji, Qingqing Dang, Kaipeng Deng, Guanzhong Wang, Yuning Du, Baohua Lai, Qiwen Liu, Xiaoguang Hu, Dianhai Yu, Yanjun Ma
链接:https://arxiv.org/abs/2111.00902
代码:https://github.com/PaddlePaddle/PaddleDetection


1、算法概述

从论文标题可以看出来,该算法主要是针对移动端设备提出来的,所以该算法特点是模型小推理速度快。本文中,作者致力于研究目标检测的关键优化和神经网络架构选择,以提高准确性和推理速度。作者研究了无锚框策略在轻量级目标检测模型中的适用性,并且增强了主干结构,设计了颈部轻量化结构,提高了网络的特征提取能力。改进了标签分配策略和损失函数,使训练更加稳定和高效。通过这些优化,作者建立了一个新的实时目标检测器系列,名为PP-PicoDet,它在移动设备的目标检测上实现了卓越的性能。与其他流行的模型相比,该模型在准确性和延迟之间实现了更好的权衡。只有0.99M个参数的PicoDet-S实现了30.6%的mAP,与YOLOX-Nano相比,mAP值提高了4.8%,同时将移动CPU推理延迟降低了55%;与NanoDet相比,mAP提高了7.1%。当输入大小为320时,它在移动ARM CPU上达到123 FPS(使用Paddle Lite时为150 FPS)。仅使用330万个参数的PicoDet-L实现了40.9%的mAP, mAP提高了3.7%,比YOLOv5s快44%。在COCO数据集上的表现为:
在这里插入图片描述
PP-PicoDet的贡献如下:

  • 1、neck中改进PAN结构,采用CSP-PAN,用1x1卷积减少参数的情况下提升了特征提取能力,用5x5的深度可分离卷积(depthwise separable convolution)替换了3x3的可分离卷积,提升了感受野的大小。
  • 2、采用SimOTA动态标签分配策略,对部分计算细节进行优化。具体来说,使用了变焦损失(VFL)的加权求和与GIoU loss来计算成本矩阵,在不损害效率的前提下提高了准确性。
  • 3、提出了基于ShuffleNetV2改进的Enhanced ShuffleNet(ESNet),性能比原版ShuffleNetV2好。
  • 4、提出一种改进的单次神经网络检测架构搜索(NAS)流水线,自动查找最优的架构进行目标检测。

2、PP-PicoDet细节

PP-PicoDet网络结构图如下所示:
Backbone:基于shuffleNetV2改进,ESNet,输出C3,C4,C5特征图进入neck;
Neck:CSP-PAN,接受C3,C4,C5输入,输出P3,P4,P5,P6;
在这里插入图片描述

2.1 Better Backbone

手工设计的backbone: 基于之前的经验,作者发现ShuffleNetV2在移动端设备上比其他网络更强大,为了进一步提高ShuffleNetV2的性能,作者遵循了PPLCNet的一些方法优化网络结构,构建新的骨干网络,即Enhanced ShuffleNet(ESNet)。ESNet主要由ES Block组成,其结构如下:
在这里插入图片描述
神经网络结构搜索: 作者首次提出了单次搜索目标探测器的方法。配备了用于分类的高性能主干的对象检测器可能不是最优的,因为分类和检测是两个不同的任务。所以作者不是搜索更好的分类器,而是直接在检测数据集上训练和搜索检测超级网络(the detection supernet),这可以节省大量的计算量并优化检测任务而不是优化分类任务。该框架包括两个步骤:(1)在检测数据集上训练单次超级网络;(2)在训练好的超级网络上使用进化算法(EA)进行架构搜索。为了方便起见,作者在这里简单地使用通道搜索主干网。具体来说,作者提供了灵活的比率选项来选择不同的通道比率。比如:[0.5, 0.675, 0.75, 0.875, 1]。

2.2 CSPPAN and Detector Head

本文使用PAN结构获得多层次特征图,使用CSP结构进行相邻特征图之间的特征拼接和融合。具体的使用用1x1卷积减少参数的情况下提升了特征提取能力,用5x5的深度可分离卷积提升感受野大小。具体参考上图CSP-PAN结构图。
在detector head部分,作者也使用5x5的深度可分离卷积提升感受野大小,不像YOLOX解耦了回归分支和分类分支,PP-PicoDet没有将两者解耦,获得的性能相同。

2.3 Label Assignment Strategy and Loss

作者采用了SimOTA动态分配标签策略(和YOLOX一样),SimOTA首先通过中心先验确定候选区域,然后计算预测框和候选区域中gt框的IoU,最后通过对每个gt框的n个最大IoU求和得到参数k。成本矩阵(The cost matrix)是通过直接计算所有预测框的损失与候选区域内的gt框得到的。原始的SimOTA是CEloss和IoUloss加权求和得到成本矩阵。为了使SimOTA中的代价与目标函数保持一致,作者使用Varifocal损失和GIoU损失的加权和作为成本矩阵。公式为:
在这里插入图片描述
实验中λ设置为6
在检测头中,对于分类任务,作者利用Varifocal损失将分类预测和质量预测结合起来;对于回归任务,作者利用GIoU损失和Distribution Focal Loss,公式如下:
在这里插入图片描述

2.4 Other Strategies

激活函数: 作者将检测算法中的激活函数从ReLU替换为H-Swish,在保持推理时间不变的情况下,性能显著提高。
学习率下降策略: 采用Cosine learning rate decay,余弦学习率平稳下降,在batchsize比较大时,有利于训练过程。
数据增强: 过多的数据增强往往会增加正则化效果,使训练更难以收敛。所以在这项工作中,作者只使用随机翻转、随机裁剪和多尺度调整来进行训练中的数据增强。


3、实验

在COCO-2017 training集上训练,在COCO-2017 test-dev集上评估。

3.1 消融实验

关于改进措施的消融实验,如下表所示:
在这里插入图片描述
Base模型为与NanoDet相似的基础模型,主干采用ShuffleNetV2-1x,颈部采用无卷积的PAN,Loss采用标准GFL损失,标签分配策略采用ATSS。所有激活函数都使用LeakyRelu。得到的mAP(0.5:0.95)为25.3%。可以看到PAN经过改进变成CSP-PAN后,性能提升很大。

3.2 与其他检测算法对比

与其他先进检测算法对比,作者使用NCNN库进行延迟测试,并为PP-PicoDet模型添加了Paddle Lite推理延迟,实验结果如下所示:
在这里插入图片描述

这篇关于目标检测——PP-PicoDet算法解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/828731

相关文章

解读docker运行时-itd参数是什么意思

《解读docker运行时-itd参数是什么意思》在Docker中,-itd参数组合用于在后台运行一个交互式容器,同时保持标准输入和分配伪终端,这种方式适合需要在后台运行容器并保持交互能力的场景... 目录docker运行时-itd参数是什么意思1. -i(或 --interactive)2. -t(或 --

解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题

《解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题》在Spring开发中,@Autowired注解常用于实现依赖注入,它可以应用于类的属性、构造器或setter方法上,然... 目录1. 为什么 @Autowired 在属性上被警告?1.1 隐式依赖注入1.2 IDE 的警告:

Rust中的注释使用解读

《Rust中的注释使用解读》本文介绍了Rust中的行注释、块注释和文档注释的使用方法,通过示例展示了如何在实际代码中应用这些注释,以提高代码的可读性和可维护性... 目录Rust 中的注释使用指南1. 行注释示例:行注释2. 块注释示例:块注释3. 文档注释示例:文档注释4. 综合示例总结Rust 中的注释

解读Pandas和Polars的区别及说明

《解读Pandas和Polars的区别及说明》Pandas和Polars是Python中用于数据处理的两个库,Pandas适用于中小规模数据的快速原型开发和复杂数据操作,而Polars则专注于高效数据... 目录Pandas vs Polars 对比表使用场景对比Pandas 的使用场景Polars 的使用

Rust中的Drop特性之解读自动化资源清理的魔法

《Rust中的Drop特性之解读自动化资源清理的魔法》Rust通过Drop特性实现了自动清理机制,确保资源在对象超出作用域时自动释放,避免了手动管理资源时可能出现的内存泄漏或双重释放问题,智能指针如B... 目录自动清理机制:Rust 的析构函数提前释放资源:std::mem::drop android的妙

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

关于Gateway路由匹配规则解读

《关于Gateway路由匹配规则解读》本文详细介绍了SpringCloudGateway的路由匹配规则,包括基本概念、常用属性、实际应用以及注意事项,路由匹配规则决定了请求如何被转发到目标服务,是Ga... 目录Gateway路由匹配规则一、基本概念二、常用属性三、实际应用四、注意事项总结Gateway路由