OpenCV学习笔记(十)——利用腐蚀和膨胀进行梯度计算以及礼帽和黑帽

2024-03-20 02:44

本文主要是介绍OpenCV学习笔记(十)——利用腐蚀和膨胀进行梯度计算以及礼帽和黑帽,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

梯度计算

在OpenCV中,梯度计算是图像处理中的一个基本操作,用于分析图像中像素值的变化速率的方向,其中梯度的方向是函数变化最快的方向,因此在图像中,沿着梯度方向可以找到灰度值变化最大的区域,这通常是图像边缘所在的位置。

在OpenCV中,可以通过腐蚀和膨胀算图像的梯度。由上篇文章中提到膨胀和腐蚀操作可以计算图片的轮廓。

以下面这张图片为例:

现在对于梯度进行计算的代码如下所示:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg=cv2.imread(r'D:\Photo\3.png')
kernel=np.ones((5,5),np.uint8)
img_erosion=cv2.erode(img,kernel,iterations=1)
img_dilate=cv2.dilate(img,kernel,iterations=1)
img_new=img_dilate-img_erosion
cv2.imshow('img',img_new)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下所示:

通过上图的运行结果可以看到, 原图中j以及j里面的斑点被清晰地表示了出来,并且线条的轮廓还是比较清楚的,效果也不错。

膨胀减去腐蚀的图片显然是一个不错的选择,但是OpenCV中提供了一个专门的方式进行这种梯度的运算:

import cv2img=cv2.imread(r'D:\Photo\3.png')
kernel=np.ones((7,7),np.uint8)
img_gradient=cv2.morphologyEx(img,cv2.MORPH_GRADIENT,kernel)
cv2.imshow('img_gradient',img_gradient)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下所示:

可以看到上下两张图片的效果基本相同,在实际操作的时候选择两种方式均可。

礼帽和黑帽

(1)礼帽

礼帽变换是形态学图像处理中的一种操作,用于突出显示图像中的小亮区域。其中礼帽的做法是从原始图像中减去开运算的图像,结果是突出了亮度较周围更高的区域。简单来说,就是用原图来减去开运算的图像。

例如:

import cv2
import numpy as npimg=cv2.imread(r'D:\Photo\3.png')
kernel= np.ones((5, 5),np.uint8)
img_opening= cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
res=img-img_opening
cv2.imshow('res',res)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下所示:

在上图中的白色斑点和隐约的线条就是所求的礼帽。在OpenCV中同样可以直接求得,写法为cv2.morphologyEx(img,cv2.MORPH_TOPHAT,kernel),代码为:

import cv2
import numpy as npimg=cv2.imread(r'D:\Photo\3.png')
kernel= np.ones((5, 5),np.uint8)
tophat=cv2.morphologyEx(img,cv2.MORPH_TOPHAT,kernel)
cv2.imshow('tophat',tophat)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下 所示:

可以看到上下两张图片是完全相的,可以看到效果完全相同。 

 (2)黑帽

和礼帽一样,也是为了用于突出显示图像中的小亮区域。黑帽的操作是从闭运算的图像减去原图,结果是突出了亮度较周围更高的区域。简单来说,就是用闭运算的图像来减去原图。

同样,用闭运算减去原图图像:

import cv2
import numpy as npimg=cv2.imread(r'D:\Photo\3.png')
kernel= np.ones((5, 5),np.uint8)
img_closeing= cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
res=img_closeing-img
cv2.imshow('res',res)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下所示:

和礼帽一样,黑帽也有另一种写法,写法为 cv2.morphologyEx(img,cv2.MORPH_TOPHAT,kernel),代码如下所示:

import cv2
import numpy as npimg=cv2.imread(r'D:\Photo\3.png')
kernel= np.ones((5, 5),np.uint8)
blackhat=cv2.morphologyEx(img,cv2.MORPH_BLACKHAT,kernel)
cv2.imshow('blackhat',blackhat)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下:

可以看到两种结果是相同的,因此这两中在实际操作均可以。 

这篇关于OpenCV学习笔记(十)——利用腐蚀和膨胀进行梯度计算以及礼帽和黑帽的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/828041

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Python利用PIL进行图片压缩

《Python利用PIL进行图片压缩》有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所以本文为大家介绍了Python中图片压缩的方法,需要的可以参考下... 有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所有可以对文件中的图

如何使用Spring boot的@Transactional进行事务管理

《如何使用Springboot的@Transactional进行事务管理》这篇文章介绍了SpringBoot中使用@Transactional注解进行声明式事务管理的详细信息,包括基本用法、核心配置... 目录一、前置条件二、基本用法1. 在方法上添加注解2. 在类上添加注解三、核心配置参数1. 传播行为(

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前