OpenCV学习笔记(十)——利用腐蚀和膨胀进行梯度计算以及礼帽和黑帽

2024-03-20 02:44

本文主要是介绍OpenCV学习笔记(十)——利用腐蚀和膨胀进行梯度计算以及礼帽和黑帽,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

梯度计算

在OpenCV中,梯度计算是图像处理中的一个基本操作,用于分析图像中像素值的变化速率的方向,其中梯度的方向是函数变化最快的方向,因此在图像中,沿着梯度方向可以找到灰度值变化最大的区域,这通常是图像边缘所在的位置。

在OpenCV中,可以通过腐蚀和膨胀算图像的梯度。由上篇文章中提到膨胀和腐蚀操作可以计算图片的轮廓。

以下面这张图片为例:

现在对于梯度进行计算的代码如下所示:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg=cv2.imread(r'D:\Photo\3.png')
kernel=np.ones((5,5),np.uint8)
img_erosion=cv2.erode(img,kernel,iterations=1)
img_dilate=cv2.dilate(img,kernel,iterations=1)
img_new=img_dilate-img_erosion
cv2.imshow('img',img_new)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下所示:

通过上图的运行结果可以看到, 原图中j以及j里面的斑点被清晰地表示了出来,并且线条的轮廓还是比较清楚的,效果也不错。

膨胀减去腐蚀的图片显然是一个不错的选择,但是OpenCV中提供了一个专门的方式进行这种梯度的运算:

import cv2img=cv2.imread(r'D:\Photo\3.png')
kernel=np.ones((7,7),np.uint8)
img_gradient=cv2.morphologyEx(img,cv2.MORPH_GRADIENT,kernel)
cv2.imshow('img_gradient',img_gradient)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下所示:

可以看到上下两张图片的效果基本相同,在实际操作的时候选择两种方式均可。

礼帽和黑帽

(1)礼帽

礼帽变换是形态学图像处理中的一种操作,用于突出显示图像中的小亮区域。其中礼帽的做法是从原始图像中减去开运算的图像,结果是突出了亮度较周围更高的区域。简单来说,就是用原图来减去开运算的图像。

例如:

import cv2
import numpy as npimg=cv2.imread(r'D:\Photo\3.png')
kernel= np.ones((5, 5),np.uint8)
img_opening= cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
res=img-img_opening
cv2.imshow('res',res)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下所示:

在上图中的白色斑点和隐约的线条就是所求的礼帽。在OpenCV中同样可以直接求得,写法为cv2.morphologyEx(img,cv2.MORPH_TOPHAT,kernel),代码为:

import cv2
import numpy as npimg=cv2.imread(r'D:\Photo\3.png')
kernel= np.ones((5, 5),np.uint8)
tophat=cv2.morphologyEx(img,cv2.MORPH_TOPHAT,kernel)
cv2.imshow('tophat',tophat)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下 所示:

可以看到上下两张图片是完全相的,可以看到效果完全相同。 

 (2)黑帽

和礼帽一样,也是为了用于突出显示图像中的小亮区域。黑帽的操作是从闭运算的图像减去原图,结果是突出了亮度较周围更高的区域。简单来说,就是用闭运算的图像来减去原图。

同样,用闭运算减去原图图像:

import cv2
import numpy as npimg=cv2.imread(r'D:\Photo\3.png')
kernel= np.ones((5, 5),np.uint8)
img_closeing= cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
res=img_closeing-img
cv2.imshow('res',res)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下所示:

和礼帽一样,黑帽也有另一种写法,写法为 cv2.morphologyEx(img,cv2.MORPH_TOPHAT,kernel),代码如下所示:

import cv2
import numpy as npimg=cv2.imread(r'D:\Photo\3.png')
kernel= np.ones((5, 5),np.uint8)
blackhat=cv2.morphologyEx(img,cv2.MORPH_BLACKHAT,kernel)
cv2.imshow('blackhat',blackhat)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下:

可以看到两种结果是相同的,因此这两中在实际操作均可以。 

这篇关于OpenCV学习笔记(十)——利用腐蚀和膨胀进行梯度计算以及礼帽和黑帽的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/828041

相关文章

SpringSecurity6.0 如何通过JWTtoken进行认证授权

《SpringSecurity6.0如何通过JWTtoken进行认证授权》:本文主要介绍SpringSecurity6.0通过JWTtoken进行认证授权的过程,本文给大家介绍的非常详细,感兴趣... 目录项目依赖认证UserDetailService生成JWT token权限控制小结之前写过一个文章,从S

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详