洛谷P2522 - [HAOI2011]Problem b

2024-03-19 17:58
文章标签 洛谷 problem haoi2011 p2522

本文主要是介绍洛谷P2522 - [HAOI2011]Problem b,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Portal

Description

进行\(T(T\leq10^5)\)次询问,每次给出\(x_1,x_2,y_1,y_2\)\(d\)(均不超过\(10^5\)),求\(\sum_{i=x_1}^{x_2} \sum_{j=y_1}^{y_2} [gcd(i,j)=d]\)

Solution

莫比乌斯反演入门题。
\(calc(n,m)\)表示\(i\in[1,n],j\in[1,m]\)\(gcd(i,j)=d\)的数对\((i,j)\)的个数。那么简单地进行容斥,可知\(ans=calc(x_2,y_2)-calc(x_1-1,y_2)-calc(x_2,y_1-1)+calc(x_1-1,x_2-1)\)
于是考虑如何计算\(calc(n,m)\)
\[ f(d) = \sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)=d] \]

\[\begin{align*} F(x) &= \sum_{x|d} f(d) \\ &= \sum_{x|d} \sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)=d] \\ &= \sum_{k=1}^{⌊\frac{n}{x}⌋} \sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)=kx] \\ &= ⌊\frac{n}{x}⌋⌊\frac{m}{x}⌋ \end{align*}\] \(gcd(i,j)=kx \Leftrightarrow x|i\)\(x|j\),那满足条件的\((i,j)\)就有\(⌊\frac{n}{x}⌋⌊\frac{m}{x}⌋\)对。再进行莫比乌斯反演:
\[ f(x)= \sum_{x|d} \mu(\frac{d}{x}) F(d) = \sum_{x|d} \mu(\frac{d}{x})⌊\frac{n}{d}⌋⌊\frac{m}{d}⌋ = \sum_{k=1}^{⌊\frac{n}{x}⌋} \mu(k)⌊\frac{n}{kx}⌋⌊\frac{m}{kx}⌋ \]这个做法看起来是\(O(\dfrac{n}{x})\)的。不过由于\(⌊\dfrac{n}{i}⌋\)最多只有\(\sqrt n\)种取值,所以我们可以以\(O(\sqrt n)\)的复杂度进行计算。

i123456789101112131415
15/i1575332211111111

观察发现,一个取值为\(v\)的区间是以\(⌊\frac{n}{v}⌋\)结尾的,下一个区间是从\(⌊\frac{n}{v}⌋+1\)开始的,模拟这一性质去计算即可。若对于区间\(k\in[L,R]\)\(⌊\frac{n}{kx}⌋=v_1,⌊\frac{m}{kx}⌋=v_2\),那么该区间对答案的贡献为\(v_1v_2\sum_{k=L}^R \mu(k)\),预处理出\(\mu(x)\)的前缀和即可。

时间复杂度\(O(T\sqrt {10^5})\)

Code

//[HAOI2011]Problem b
#include <algorithm>
#include <cstdio>
using std::min; using std::swap;
typedef long long lint;
inline char gc()
{static char now[1<<16],*s,*t;if(s==t) {t=(s=now)+fread(now,1,1<<16,stdin); if(s==t) return EOF;}return *s++;
}
inline int read()
{int x=0; char ch=gc();while(ch<'0'||'9'<ch) ch=gc();while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();return x;
}
const int N=5e4+10;
int mu[N],pre[N];
int cntP,pr[N]; bool notP[N];
void getMu(int n)
{mu[1]=1;for(int i=2;i<=n;i++){if(!notP[i]) pr[++cntP]=i,mu[i]=-1;for(int j=1;j<=cntP;j++){if((lint)i*pr[j]>n) break;int x=i*pr[j]; notP[x]=true;if(i%pr[j]) mu[x]=-mu[i]; else {mu[x]=0; break;}}}for(int i=1;i<=n;i++) pre[i]=pre[i-1]+mu[i];
}
int k;
lint calc(int x,int y)
{x/=k,y/=k; if(x>y) swap(x,y);lint res=0;for(int L=1,R;L<=x;L=R+1){int v1=x/L,v2=y/L; R=min(x/v1,y/v2);res+=1LL*(pre[R]-pre[L-1])*v1*v2;}return res;
}
int main()
{getMu(5e4);int Q=read();while(Q--){int fr1=read(),to1=read(),fr2=read(),to2=read(); k=read();printf("%lld\n",calc(to1,to2)-calc(fr1-1,to2)-calc(to1,fr2-1)+calc(fr1-1,fr2-1));}return 0;
}

P.S.

同样的题洛谷P2257。

转载于:https://www.cnblogs.com/VisJiao/p/LgP2522.html

这篇关于洛谷P2522 - [HAOI2011]Problem b的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/826814

相关文章

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

高精度计算(代码加解析,洛谷p1601,p1303)除法待更新

目录 高精度加法 高精度减法 高精度乘法 高精度加法 我们知道在c++语言中任何数据类型都有一定的表示范围。当两个被加数很大时,正常加法不能得到精确解。在小学,我们做加法都采用竖式方法。那么我们也只需要按照加法进位的方式就能得到最终解。 8 5 6+ 2 5 5-------1 1 1 1 加法进位: c[i] = a[i] + b[i];if(c[i] >=

洛谷 凸多边形划分

T282062 凸多边形的划分 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 先整一个半成品,高精度过两天复习一下补上 #include <iostream>#include <algorithm>#include <set>#include <cstring>#include <string>#include <vector>#include <map>

能量项链,洛谷

解释:  环形dp问题还是考虑将环拉直,可以参考我上一篇文章:环形石子合并 [2 3 5 10 2] 3 5 10 将环拉直,[]内是一个有效的区间,可以模拟吸收珠子的过程,         如[2 3 5] <=>(2,3)(3,5)    2是头,3是中间,5是尾 len >= 3:因为最后[2 10 2]是最小的可以合并的有效区间 len <= n + 1因为[2 3

11991 - Easy Problem from Rujia Liu?

题意: 输入一串整型数列,再输入两个数k,v,输出第k个v的序号。不存在则输出0,如第一个样例 8 41 3 2 2 4 3 2 11 3 //第1个3,序号为2,输出22 4 //第2个4,不存在,输出03 2 //第3个2,序号为7,输出74 2 思路: struct num {

HDU 1016 Prime Ring Problem (深搜)

OJ题目 : click here ~~ 大概题意:n个数,形成一个环,使得相邻两个数的和为素数。以1开始,按字典序输出序列。 很简单的深搜。 AC_CODE int n;int visit[22];int num[22];int len;bool Is_prime(int x){for(int i = 2;i*i <= x;i++)if(x%i == 0) return

LVM 'Can’t open /dev/sdb1 exclusively. Mounted filesystem?' Problem

在将几块盘做LVM时,遇到一个之前都没遇到过的问题: root@ubuntu:~# pvcreate /dev/sdc1Can't open /dev/sdc1 exclusively. Mounted filesystem? 首先第一反应就是查看这个分区是否已经在使用了,但是没有。 查看硬盘的一些信息: root@ubuntu:~# cat /proc/partitionsmajo

洛谷P5490扫描线

0是最小的数字,将一个线段看成一个区间,对于一个矩形,从下扫到上,入边为1,而出边为-1,意思是将这个区间上的所有点加1(区间修改).把线段表示为Line[i],其中记录了l,r,h,tag,左右端点,高度,入边还是出边(1或-1) 那么每次区间修改后不为0的区间它的值可能是1,2,3或者是其它数字,这不好统计,可以将它转化一下,0是不是表示没有被覆盖过的地方,我们只要统计0的个数然后用总长减去

【HDU】3861 The King’s Problem 强连通缩点+有向图最小路径覆盖

传送门:【HDU】3861 The King’s Problem 题目分析:首先强连通缩点,因为形成一个环的王国肯定在一条路径中,这样才能保证拆的少。 然后缩点后就是DAG图了,由于题目要求的是最小路径覆盖,那么二分匹配即可。 代码如下: #include <cstdio>#include <cstring>#include <algorithm>#includ