带有GUI界面的电机故障诊断(MSCNN-BILSTM-ATTENTION模型,TensorFlow框架,有中文注释,带有六种结果可视化)

本文主要是介绍带有GUI界面的电机故障诊断(MSCNN-BILSTM-ATTENTION模型,TensorFlow框架,有中文注释,带有六种结果可视化),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本次创作最主要是在MSCNN-BILSTM-ATTENTION模型(可轻松替换为其它模型)基础上,搭建GUI测试界面,方便对你想要测试的数据的进行测试,同时进行了全面的结果可视化:1.训练集和测试集的准确率曲线,2.训练集和测试集的损失曲线,3.测试集的混淆矩阵,4.测试集的特征可视化,5.测试集的预测标签与真实标签梯形图,6.测试集的分类报告。

数据集替换提示:本次使用的数据集形式在1.2.小结中有详细介绍,利用一个通道采集的数据,通过1024的长度切割为一个个样本,是故障诊断领域常用的样本形式,如有类似,可轻易替换。

先对大家比较关心的GUI界面进行调用测试样本说明(视频链接:带有GUI界面的电机故障诊断(MSCNN-BILSTM-ATTENTION模型,TensorFlow框架,有中文注释,带有六种结果可视化)_哔哩哔哩_bilibili

第一个文件夹是测试样本

第二个文件夹是对应的测试样本真实标签类别,方便你核对模型判断结果是否正确

第一个文件夹如下图所示,每个样本就是一个表格。

每个表格里就是1024个数据,如下图所示 ,也就是说只要你随表建立一个表格,里面放相关数据的1024个数据,就可以诊断出类别。

关于背景图片和按钮框等选项都可以任意修改,已经添加中文注释,如果感觉画面布局一般,可以自己优化。

 对项目感兴趣,可以关注代码框内最后一行

import pandas as pd
import numpy as np
from keras.utils import np_utils
from sklearn import preprocessing
import tensorflow as tf
from matplotlib import pyplot as plt
from MSCNN_lstm_attention import MSCNN_lstm_attention
#代码和数据集压缩包:https://mbd.pub/o/bread/ZZybk5tw

一.数据集介绍:

1.1.电机常见的故障类型有以下几种:

  1. 轴承故障:轴承是电机运转时最容易受损的部件之一。常见故障包括磨损、疲劳、过热和润滑不良,这些问题可能导致噪音增加和电机性能下降。

  2. 绝缘老化:电机绝缘材料随着使用时间的增加会老化,失去绝缘性能,导致绝缘击穿和电机短路。

  3. 绕组故障:电机的绕组可能出现短路、开路或者匝间故障,这些故障会导致电机失去正常运转能力。

  4. 电刷磨损:对于一些直流电机,电刷是关键部件,其磨损会导致电刷与集电环之间的接触不良,影响电机性能。

  5. 过载和过热:电机长时间运行在超过额定负载或者额定温度的情况下,会导致电机过热,进而加速其它故障的发生。

  6. 风扇故障:风扇是电机散热的重要组成部分,若风扇故障导致散热不良,电机温度升高,从而加剧其它故障。

  7. 不良环境:如果电机运行环境恶劣,如潮湿、灰尘多、腐蚀性气体等,会加速电机故障的发生。

  8. 频率变化:对于变频驱动的电机,频率的变化可能导致电机在某些转速下共振,损坏电机。

以上仅列举了一些常见的电机故障类型,实际情况还可能会更加复杂。

1.2.数据集介绍(经过上面的电机常见故障分析,这里针对轴承部位故障,绕组故障等情况采集数据)

 正常电机的采集数据:(3个通道采集振动信号,3个通道采集电压信号)

 正常电机下一共采集362941行数据

 其它故障状态下分别采集了140801行数据左右 ,因为现实中故障数据相比正常数据难以获得,所以实验室里采集的正常电机的信号比故障下的信号要多。

2.模型

 首先经过尝试,发现第3个振动通道采集的数据对故障更加敏感,这里只选用了第3个振动通道采集的数据作为特征信号。经过不重叠样本(1024的长度)切割,生成样本个数如下

正常:354个样本。

断条:137个样本

偏心:113个样本

匝间短路:105个样本

轴承内圈:118个样本

轴承外圈:104个样本

模型打印

3.结果可视化

3.1.训练集和测试集的准确率曲线,

3.2.训练集和测试集的损失曲线,

3.3.测试集的混淆矩阵(以准确率形式呈现)

3.4.测试集的特征可视化,

3.5.测试集的预测标签与真实标签梯形图,

3.6.测试集的分类报告。

这篇关于带有GUI界面的电机故障诊断(MSCNN-BILSTM-ATTENTION模型,TensorFlow框架,有中文注释,带有六种结果可视化)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/826403

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Java下载文件中文文件名乱码的解决方案(文件名包含很多%)

《Java下载文件中文文件名乱码的解决方案(文件名包含很多%)》Java下载文件时,文件名中文乱码问题通常是由于编码不正确导致的,使用`URLEncoder.encode(filepath,UTF-8... 目录Java下载文件中文文件名乱码问题一般情况下,大家都是这样为了解决这个问题最终解决总结Java下

修改若依框架Token的过期时间问题

《修改若依框架Token的过期时间问题》本文介绍了如何修改若依框架中Token的过期时间,通过修改`application.yml`文件中的配置来实现,默认单位为分钟,希望此经验对大家有所帮助,也欢迎... 目录修改若依框架Token的过期时间修改Token的过期时间关闭Token的过期时js间总结修改若依

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英