算法沉淀——贪心算法二(leetcode真题剖析)

2024-03-19 15:04

本文主要是介绍算法沉淀——贪心算法二(leetcode真题剖析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

算法沉淀——贪心算法二

  • 01.最长递增子序列
  • 02.递增的三元子序列
  • 03.最长连续递增序列
  • 04.买卖股票的最佳时机

01.最长递增子序列

题目链接:https://leetcode.cn/problems/longest-increasing-subsequence/

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500
  • -104 <= nums[i] <= 104

思路

可以通过维护一个数组,其中 ret[i] 表示长度为 i+1 的递增子序列中,最后一个元素的最小值。在遍历数组过程中,不断更新这个数组,以确保它仍然满足递增的性质。

每当新元素加入时,可以利用二分查找找到当前元素在 ret 数组中的插入位置,然后更新这个位置上的值。这样,就能够在数组中维护递增子序列的信息。

这种方法的关键点在于,我们只关心递增子序列的最后一个元素,而不是整个递增子序列的具体形状。通过维护最后一个元素的最小值,可以在遍历数组时保持递增子序列的长度信息,并在需要时更新。

代码

class Solution {
public:int lengthOfLIS(vector<int>& nums) {int n=nums.size();vector<int> ret;ret.push_back(nums[0]);for(int i=1;i<n;i++){if(nums[i]>ret.back())  ret.push_back(nums[i]);else{int left=0,right=ret.size()-1;while(left<right){int mid=(left+right)>>1;if(ret[mid]<nums[i]) left=mid+1;else right=mid;}ret[left]=nums[i];}}return ret.size();}
};

02.递增的三元子序列

题目链接:https://leetcode.cn/problems/increasing-triplet-subsequence/

给你一个整数数组 nums ,判断这个数组中是否存在长度为 3 的递增子序列。

如果存在这样的三元组下标 (i, j, k) 且满足 i < j < k ,使得 nums[i] < nums[j] < nums[k] ,返回 true ;否则,返回 false

示例 1:

输入:nums = [1,2,3,4,5]
输出:true
解释:任何 i < j < k 的三元组都满足题意

示例 2:

输入:nums = [5,4,3,2,1]
输出:false
解释:不存在满足题意的三元组

示例 3:

输入:nums = [2,1,5,0,4,6]
输出:true
解释:三元组 (3, 4, 5) 满足题意,因为 nums[3] == 0 < nums[4] == 4 < nums[5] == 6

提示:

  • 1 <= nums.length <= 5 * 105
  • -231 <= nums[i] <= 231 - 1

思路

上一题的精简版,可以直接用上面的代码返回长度是否大于等于三即可,但在这里我们不需要这么复杂,仅需连个变量即可。

代码

class Solution {
public:bool increasingTriplet(vector<int>& nums) {int n=nums.size();int a=nums[0],b=INT_MAX;for(int i=1;i<n;i++){if(nums[i]>b) return true;else if(nums[i]>a) b=nums[i];else a=nums[i];}return false;}
};

03.最长连续递增序列

题目链接:https://leetcode.cn/problems/longest-continuous-increasing-subsequence/

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 lrl < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1:

输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。 

示例 2:

输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。 

提示:

  • 1 <= nums.length <= 104
  • -109 <= nums[i] <= 109

思路

当找到以某个位置为起点的最长连续递增序列后,可以直接将下一个位置作为新的起点,继续寻找下一个最长连续递增序列。

代码

class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {int ret=0,n=nums.size();for(int i=0;i<n;){int j=i+1;while(j<n&&nums[j]>nums[j-1]) j++;ret=max(ret,j-i);i=j;}return ret;}
};

04.买卖股票的最佳时机

题目链接:https://leetcode.cn/problems/best-time-to-buy-and-sell-stock/

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0

示例 1:

输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

示例 2:

输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。

提示:

  • 1 <= prices.length <= 105
  • 0 <= prices[i] <= 104

思路

遍历数组,在每个位置 i 处计算当前价格与之前最低价格的差值,更新最大利润。在遍历过程中,始终保持记录前面最低价格的变量。当找到更低的价格时,更新这个变量;当计算当前位置的利润时,与之前记录的最大利润进行比较,如果更大则更新最大利润。

代码

class Solution {
public:int maxProfit(vector<int>& prices) {int ret=0,n=prices.size();for(int i=0,prevMin=INT_MAX;i<n;i++){ret=max(ret,prices[i]-prevMin);prevMin=min(prevMin,prices[i]);}return ret;}
};

这篇关于算法沉淀——贪心算法二(leetcode真题剖析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/826379

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系