目标检测——PP-YOLOE算法解读

2024-03-19 13:12

本文主要是介绍目标检测——PP-YOLOE算法解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PP-YOLO系列,均是基于百度自研PaddlePaddle深度学习框架发布的算法,2020年基于YOLOv3改进发布PP-YOLO,2021年发布PP-YOLOv2和移动端检测算法PP-PicoDet,2022年发布PP-YOLOE和PP-YOLOE-R。由于均是一个系列,所以放一起解读,方便对比前后改进地方。


PP-YOLO系列算法解读:

  • PP-YOLO算法解读
  • PP-YOLOv2算法解读
  • PP-PicoDet算法解读
  • PP-YOLOE算法解读

YOLO系列算法解读:

  • YOLOv1通俗易懂版解读
  • SSD算法解读
  • YOLOv2算法解读
  • YOLOv3算法解读
  • YOLOv4算法解读
  • YOLOv5算法解读

文章目录

  • 1、算法概述
  • 2、PP-YOLOE细节
  • 3、实验


PP-YOLOE(2022.3.30)

论文:PP-YOLOE: An evolved version of YOLO
作者:Shangliang Xu, Xinxin Wang, Wenyu Lv, Qinyao Chang, Cheng Cui, Kaipeng Deng, Guanzhong Wang, Qingqing Dang, Shengyu Wei, Yuning Du, Baohua Lai
链接:https://arxiv.org/abs/2203.16250
代码:https://github.com/PaddlePaddle/PaddleDetection


1、算法概述

基于PP-YOLOv2进行改进,PP-YOLOE是一个anchor-free算法(受到YOLOX算法影响),用了更强的backbone,带CSPRepResStage的neck和ET-head,并且利用了TAL标签分配算法。为了更好的适配各种硬件平台,PP-YOLOE避免使用可变形卷积和Matrix NMS,而且PP-YOLOE提供s/m/l/x四个版本的网络模型以适应各个平台应用。PP-YOLOE-l在Tesla V100平台上实现了COCO test-dev集51.4%mAP和78.1FPS。若是将模型转换为TensorRT并且以FP16精度进行推理,可实现149.2FPS。与现如今最新算法的对比情况如下图所示:
在这里插入图片描述


2、PP-YOLOE细节

PP-YOLOE的整个网络框架如下所示,整个算法是anchor-free的,主干部分为CSPRepResNet,neck部分为PAN,head部分为ET-head(Efficient Task-aligned head)。
在这里插入图片描述
改进的地方:

  • Anchor-free: 受到FCOS[1]算法的启发,PP-YOLOE将PP-YOLOv2的标签匹配规则替换为了anchor-free,这种改进使得模型更快但是掉了0.3%mAP。
  • Backbone和Neck: 受到YOLOv5[2]和YOLOX[3]等网络借鉴CSPNet[4]带来的提升效果,作者也在backbone和neck中应用了RepResBlock。其结构如下图所示:
    在这里插入图片描述
    图(a)是TreeNet中的TreeBlock结构,图(b)是本文中RepResBlock在训练阶段的结构,图©是RepResBlock在推理阶段的结构,即该模块被重参数化后的样子,这来源于RepVGG[5],图(d)是CSPRepResStage的结构,将CSP与RepResBlock结合就是CSPRepResStage,作者将其应用在Backbone中,neck部分是RepResBlock和CSPRepResStage混合用的。
    除此之外,作者根据网络宽度和深度设置不同比例得到不同规模的网络结构s/m/l/x,如下表:
    在这里插入图片描述
  • 任务一致性学习(Task Alignment Learning, TAL): YOLOX采用SimOTA来作为标签分配策略,为了进一步克服分类与定位的错位,TOOD[6]提出了任务一致性学习(TAL),它由动态标签分配和任务对齐损失组成的。多态标签分配意味着预测和当前损失是相关的,根据预测,为每个真值标签动态调整分配的正锚点个数。
    通过显式地对齐这两个任务,TAL可以同时获得最高的分类分数和最精确的边界框。TAL示意图如下(图片来自TOOD论文):
    在这里插入图片描述
  • 高效的任务一致检测头(Efficient Task-aligned Head, ET-head): YOLOX的方法,解耦头部提升了检测器性能,但解耦的头部可能会使分类和定位任务分离和独立,缺乏针对任务的学习。作者使用ESE模块来代替TOOD中的层注意力,TOOD论文提出的T-Head结构如下所示,详细结构见上面PP-YOLOE网络细节。
    在这里插入图片描述

3、实验

与现如今最新检测算法在COCO2017 test-dev上的结果比较如下表所示:
在这里插入图片描述
从表中可以看出,相同图片输入尺寸下,PP-YOLOE算法的AP指标要好于YOLOv5和YOLOX,且在没转TensorRT情况下速度相当,在转为TensorRT情况下,YOLOv5的FPS稍快,PP-YOLOE居中,YOLOX最慢。


参考文献:
[1] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE/CVF international conference on computer vision, pages 9627–9636, 2019.2
[2] Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec, NanoCode012, Yonghye Kwon, TaoXie, Jiacong Fang, imyhxy, Kalen Michael, Lorna, Abhiram V, Diego Montes, Jebastin Nadar, Laughing, tkianai, yxNONG, Piotr Skalski, Zhiqiang Wang, Adam Hogan, Cristi Fati, Lorenzo Mammana, AlexWang1900, Deep Patel, Ding Yiwei, Felix You, Jan Hajek, Laurentiu Diaconu, and Mai Thanh Minh. ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference, Feb. 2022. 1, 2, 4, 5
[3] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430, 2021. 1, 2, 4, 5
[4] Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang Chen, Jun-Wei Hsieh, and I-Hau Yeh. Cspnet: A new backbone that can enhance learning capability of cnn. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pages 390–391, 2020. 2
[5] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and Jian Sun. Repvgg: Making vgg-style convnets great again. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13733–13742, 2021. 2
[6] Chengjian Feng, Yujie Zhong, Yu Gao, Matthew R Scott, and Weilin Huang. Tood: Task-aligned one-stage object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 3510–3519, 2021. 3, 4

这篇关于目标检测——PP-YOLOE算法解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/826102

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL