【算法与数据结构】二叉树(前中后)序遍历

2024-03-19 09:28

本文主要是介绍【算法与数据结构】二叉树(前中后)序遍历,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

请添加图片描述

文章目录

  • 📝前言
  • 🌠 创建简单二叉树
    • 🌉二叉树的三种遍历
      • 🌠前序
        • 🌉中序遍历
      • 🌠后序遍历
    • 🌠二叉树节点个数
    • 🌉二叉树节点个数注意点
  • 🚩总结


📝前言

一棵二叉树是结点的一个有限集合,该集合:

  1. 或者为空
  2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成
    在这里插入图片描述

二叉树可以没有节点(空树)否则,它包含一个根节点,这个根节点最多可以有两个分支:左子树和右子树,左右子树也符合二叉树的定义,可以是空树,或者由根节点和其左右子树组成。
因此二叉树的定义采用的是递归的思想:一个二叉树要么为空,要么由根节点和其左右两个子二叉树组成。左右子树本身也符合二叉树的定义,可以递归定义下去。

本小节我们将学习二叉树的前中后序遍历!

🌠 创建简单二叉树

在学习二叉树的基本操作之前,需要先创建一棵二叉树,然后才能学习相关的基本操作。由于现在大家对二叉树结构的理解还不够深入,为了降低学习成本,这里手动快速创建一棵简单的二叉树,以便快速进入二叉树操作学习。等大家对二叉树结构有了一定了解之后,再深入研究二叉树的真正创建方式。

手插简单二叉树代码:

// 二叉树节点结构体定义
typedef struct BinTreeNode
{// 左子节点指针struct BinTreeNode* left;// 右子节点指针struct BinTreeNode* right;// 节点值int val;
}BTNode;// 创建节点,分配内存并返回
BTNode* BuyBTNode(int val)
{BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));// 空间分配失败if (newnode == NULL){perror("malloc fail");return NULL;}// 初始化节点值newnode->val = val;// 初始化左右子节点为NULLnewnode->left = NULL;newnode->right = NULL;return newnode;
}// 创建示例树
BTNode* CreateTree()
{// 创建节点1-6BTNode* n1 = BuyBTNode(1);BTNode* n2 = BuyBTNode(2);BTNode* n3 = BuyBTNode(3);BTNode* n4 = BuyBTNode(4);BTNode* n5 = BuyBTNode(5);BTNode* n6 = BuyBTNode(6);// 构建树结构n1->left = n2;n1->right = n4;n2->left = n3;n4->left = n5;n4->right = n6;return n1; // 返回根节点
}

二叉树的图像:
在这里插入图片描述
注意:上述代码并不是创建二叉树的方式,真正创建二叉树方式后序详解重点讲解。

🌉二叉树的三种遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。
在这里插入图片描述

🌠前序

您说得对,我来补充一下前序遍历的注释:

前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
算法:
访问根节点 -> 前序遍历左子树 -> 前序遍历右子树

  • 即先访问根节点,然后遍历其左子树,再遍历其右子树。

在这里插入图片描述

注意:
递归基准条件是当根节点为NULL时返回。访问根节点要放在递归左右子树之前,这保证了根节点一定先于其子节点被访问。递归左子树和右子树的顺序不能调换,否则就不是前序遍历了。

代码:

void PreOrder(BTNode* root)
{if (root == NULL){printf("N ");return;}printf("%d ", root->val);PreOrder(root->left);PreOrder(root->right);
}
int main()
{BTNode* root = CreateTree();PreOrder(root);printf("\n");
}

前序递归图解:
在这里插入图片描述

运行:

🌉中序遍历

中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。中序遍历是在遍历一个结点的左子树后,然后访问这个结点,最后遍历它的右子树。

void InOrder(BTNode* root)
{if (root == NULL){printf("N ");return;}InOrder(root->left);printf("%d ", root->val);InOrder(root->right);
}

在这里插入图片描述

🌠后序遍历

后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。
后序遍历是先遍历一个结点的左右子树,最后再访问这个结点。

void PostOrder(BTNode* root)
{if (root == NULL){printf("N ");return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->val);
}

后序运行图:
在这里插入图片描述
由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。
在这里插入图片描述

🌠二叉树节点个数

这里分别实现前序、中序和后序遍历方式统计二叉树节点个数:

前序遍历:

int PreOrderCount(BTNode* root) 
{if(root == NULL) return 0;count++;  PreOrderCount(root->left);PreOrderCount(root->right);return count;
}int TreeSize(BTNode* root) 
{if(root == NULL) return 0;  count = 0;PreOrderCount(root);return count;
}

中序遍历:

int InOrderCount(BTNode* root) 
{if(root == NULL) return 0;InOrderCount(root->left);count++;InOrderCount(root->right);return count;
}int TreeSize(BTNode* root) 
{if(root == NULL) return 0;count = 0;  InOrderCount(root);return count;
}

后序遍历:

int PostOrderCount(BTNode* root) 
{if(root == NULL) return 0;PostOrderCount(root->left);PostOrderCount(root->right);count++;return count;
}int TreeSize(BTNode* root) 
{if(root == NULL) return 0;count = 0;PostOrderCount(root);return count;
}

三种遍历方式都是通过递归遍历每个节点,并在遍历每个节点时将统计变量count加1,最终count的值即为树的节点总数。

🌉二叉树节点个数注意点

注意当我们TreeSize函数使用了static变量size来统计节点个数,static变量的值会在函数调用之间保留,所以第二次调用TreeSize时,size的值会继续增加,导致统计结果叠加。

int TreeSize(BTNode* root)
{static int size = 0;if (root == NULL)return 0;else++size;TreeSize(root->left);TreeSize(root->right);return size;
}
int main()
{printf("TreeSize : %d\n", TreeSize(root));printf("TreeSize : %d\n", TreeSize(root));
}

代码运行:

在这里插入图片描述

改进

为了解决使用static变量导致的结果叠加问题,可以考虑使用以下方法:

  1. 每次调用TreeSize前重置size为0:
int TreeSize(BTNode* root) {static int size = 0;size = 0; // reset sizeif (root == NULL) return 0;else++size;TreeSize(root->left);TreeSize(root->right);return size;
}
  1. 不使用static变量,直接返回递归调用的结果:
int TreeSize(BTNode* root) 
{if (root == NULL)return 0;else return 1 + TreeSize(root->left) + TreeSize(root->right);
}

如果当前节点为NULL,直接返回0否则,返回:当前节点本身为1,加上左子树的节点数(TreeSize(root->left)返回值),加上右子树的节点数(TreeSize(root->right)返回值)

  1. 将size定义为函数参数,每次递归传递:
int TreeSize(BTNode* root, int* size) 
{if (root == NULL) return 0;*size += 1;TreeSize(root->left, size);TreeSize(root->right, size);return *size;
}
int main()
{// 调用int size = 0;TreeSize(root, &size);
}

🚩总结

请添加图片描述

这篇关于【算法与数据结构】二叉树(前中后)序遍历的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/825521

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯: