高维全局优化 —— CBCC3

2024-03-19 00:50
文章标签 全局 优化 高维 cbcc3

本文主要是介绍高维全局优化 —— CBCC3,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、问题背景介绍

在高维优化问题中,通常采用分治法,对维度进行分组之后分别演化,最后合并得出结果。在协同演化之类的算法中,会对每一个分组进行循环演化。实际情况中,每个分组的权重不尽相同,当对某些权重很低的分组进行演化后,对于结果的改进会不如人意,因此,需要采用一种方案,识别分组后的各个分组的贡献度,然后对具有高贡献的分组给予更多的评估次数。借此提高全局优化的结果。

Contribution-Based Cooperative Co-evolutionary是基于贡献的协同演化算法,CBCC3 基于 CBCC1, CBCC2上做了一些改进,在CEC2013上的测试结果优于之前的算法。

CBCC1, CBCC2 是 CBCC的变种,CBCC1 更多的关注种群的探索,给分组更多更新自己贡献度的频率,CBCC2 更多关注挖掘,在分组的贡献停滞不前之前尽可能的进化。

二、算法介绍

2.1 CBCC基本算法

上述matlab伪码介绍了CBCC使用贡献信息来选择分组进行优化,

测试阶段(探索阶段):在10-16行中对每个分组循环进行优化,并获得贡献最高的分组;

挖掘阶段:在20-28行中对贡献最高的分组进行优化,version = eum[1, 2],表示 CBCC 的版本数,CBCC1 对最好的分组只进化一次再切换,CBCC2 将分组进化到贡献为 0 时再切换。

CBCC1, CBCC2 缺点:

1. CBCC 对适应值的局部变化反应缓慢,对早期的探索阶段过程中的信息强烈依赖,在第 24 行中,每一轮贡献的更新会被叠加,在初始过程具有贡献更大的分组会获得更多评估次数,而对其他所有分组平等对待。

2. 频繁应用探索阶段,对资源利用效率过低。

2.2 CBCC3

CBCC3 的改进:

  • 第 11 行:引入了概率Pt,在探索过程的进行循环时,除了第一轮以外,探索过程发生在概率 Pt 上;当所有分组均没有贡献时,循环进化;
  • 第 15 - 18 行,27 - 19 行:消除了贡献的历史信息,转为记录最后一次非零的 delta 值,避免早期的结果对于整个过程的影响过大,同时,一个较大的 maxGens 会使得 delta 不为 0;
  • 第 21 行:每一次探索过程后,分组的 delta 值会被排序,选择本轮贡献最大的分组进行优化;
  • 第 23 行:只有当贡献小于第二贡献值才会跳出,保证不会出现 CBCC2 中的只优化一个分组的情况。

实验参数设置:

  • CEC2013 中高维全局优化问题给出的评估次数为 maxFEs = 3e6;
  • CBCC3 中每一轮的优化次数 maxGens = 100;
  • 种群大小设置为 50;
  • pt 的概率选择为 {0, 1, 0.05},pt = 1时表示每一次挖掘阶段前只进行一次探索过程,pt = 0 表示只在开始进行一次探索过程,实验结果表面 pt = 0.05 最优。

[1] Omidvar, Mohammad Nabi, et al. "CBCC3-A contribution-based cooperative co-evolutionary algorithm with improved exploration/exploitation balance." CEC. 2016.

这篇关于高维全局优化 —— CBCC3的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/824271

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份