使用libevent多线程验证Linux上的服务器惊群现象

2024-03-18 15:48

本文主要是介绍使用libevent多线程验证Linux上的服务器惊群现象,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是惊群现象?

惊群(thundering herd)是指,只有一个子进程能获得连接,但所有N个子进程却都被唤醒了,这种情况将使性能受损。
举一个很简单的例子,当你往一群鸽子中间扔一块食物,虽然最终只有一个鸽子抢到食物,但所有鸽子都会被惊动来争夺,没有抢到食物的鸽子只好回去继续睡觉, 等待下一块食物到来。这样,每扔一块食物,都会惊动所有的鸽子,即为惊群。对于操作系统来说,多个进程/线程在等待同一资源时,也会产生类似的效果,其结 果就是每当资源可用,所有的进程/线程都来竞争资源,造成的后果:
1)系统对用户进程/线程频繁的做无效的调度、上下文切换,系统系能大打折扣。
2)为了确保只有一个线程得到资源,用户必须对资源操作进行加锁保护,进一步加大了系统开销。

最常见的例子就是对于socket描述符的accept操作,当多个用户进程/线程监听在同一个端口上时,由于实际只可能accept一次,因此就会产生惊群现象.这个问题是一个古老的问题,新的操作系统内核已经解决了这一问题。

在多线程情况下,每个线程都监听同一个fd,当有数据来的时候,是否会有惊群现象呢?验证如下

服务器端代码

//g++ -g libevent_server.cpp -o libevent_server -levent -lpthread
//说明:服务器监听在本地19870端口, 等待udp client连接,有惊群现象: 当有数据到来时, 每个线程都被唤醒, 但是只有一个线程可以读到数据
//#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <pthread.h>
#include <event.h>
#include <netinet/in.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>using namespace std;int init_count = 0;
pthread_mutex_t init_lock;
pthread_cond_t init_cond;typedef struct {pthread_t thread_id; /* unique ID of this thread */struct event_base *base; /* libevent handle this thread uses */struct event notify_event; /* listen event for notify pipe */
} mythread;void *worker_libevent(void *arg)
{mythread *p = (mythread *)arg;pthread_mutex_lock(&init_lock);init_count++;pthread_cond_signal(&init_cond);pthread_mutex_unlock(&init_lock);event_base_loop(p->base, 0);
}int create_worker(void*(*func)(void *), void *arg)
{mythread *p = (mythread *)arg;pthread_t tid;pthread_attr_t attr;pthread_attr_init(&attr);pthread_create(&tid, &attr, func, arg);p->thread_id = tid;pthread_attr_destroy(&attr);return 0;
}void process(int fd, short which, void *arg)
{mythread *p = (mythread *)arg;printf("I am in the thread: [%lu]\n", p->thread_id);char buffer[100];memset(buffer, 0, 100);int ilen = read(fd, buffer, 100);printf("read num is: %d\n", ilen);printf("the buffer: %s\n", buffer);
}//设置libevent事件回调
int setup_thread(mythread *p, int fd)
{p->base = event_init();event_set(&p->notify_event, fd, EV_READ|EV_PERSIST, process, p);event_base_set(p->base, &p->notify_event);event_add(&p->notify_event, 0);return 0;
}int main()
{struct sockaddr_in in;int fd;fd = socket(AF_INET, SOCK_DGRAM, 0);//在127.0.0.1:19870处监听struct in_addr s;bzero(&in, sizeof(in));in.sin_family = AF_INET;inet_pton(AF_INET, "127.0.0.1", (void *)&s);in.sin_addr.s_addr = s.s_addr;in.sin_port = htons(19870);bind(fd, (struct sockaddr*)&in, sizeof(in));int threadnum = 10; //创建10个线程int i;pthread_mutex_init(&init_lock, NULL);pthread_cond_init(&init_cond, NULL);mythread *g_thread;g_thread = (mythread *)malloc(sizeof(mythread)*10);for(i=0; i<threadnum; i++){ //10个线程都监听同一个socket描述符, 检查是否产生惊群现象?setup_thread(&g_thread[i], fd);}for(i=0; i<threadnum; i++){create_worker(worker_libevent, &g_thread[i]);}//master线程等待worker线程池初始化完全pthread_mutex_lock(&init_lock);while(init_count < threadnum){pthread_cond_wait(&init_cond, &init_lock);}pthread_mutex_unlock(&init_lock);printf("IN THE MAIN LOOP\n");while(1){sleep(1);}//没有回收线程的代码free(g_thread);return 0;
}

客户端代码

//g++ -g libevent_client.cpp -o libevent_client
//#include <iostream>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>using namespace std;int main()
{struct sockaddr_in in;int fd;fd = socket(AF_INET, SOCK_DGRAM, 0);struct in_addr s;bzero(&in, sizeof(in));in.sin_family = AF_INET;inet_pton(AF_INET, "127.0.0.1", (void *)&s);in.sin_addr.s_addr = s.s_addr;in.sin_port = htons(19870);string str = "I am Michael";sendto(fd, str.c_str(), str.size(), 0, (struct sockaddr *)&in, sizeof(struct sockaddr_in));return 0;
}

测试效果图



参考文献

[1].http://blog.chinaunix.net/uid-26575352-id-3075103.html

[2].http://blog.csdn.net/nanjunxiao/article/details/9140769

[3].http://blog.163.com/leyni@126/blog/static/16223010220122611523786/

[4].http://simohayha.iteye.com/blog/658012

这篇关于使用libevent多线程验证Linux上的服务器惊群现象的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/822846

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

linux hostname设置全过程

《linuxhostname设置全过程》:本文主要介绍linuxhostname设置全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录查询hostname设置步骤其它相关点hostid/etc/hostsEDChina编程A工具license破解注意事项总结以RHE

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互