本文主要是介绍代码随想录算法训练营第day47|121. 买卖股票的最佳时机 、 122.买卖股票的最佳时机II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
121. 买卖股票的最佳时机
122.买卖股票的最佳时机II
121. 买卖股票的最佳时机
力扣题目链接(opens new window)
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
-
示例 1:
-
输入:[7,1,5,3,6,4]
-
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。 -
示例 2:
-
输入:prices = [7,6,4,3,1]
-
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。
思路:dp[i][0] 表示第i天持有股票所得最多现金,dp[i][1] 表示第i天不持有股票所得最多现金;注意这里说的是“持有”,“持有”不代表就是当天“买入”!也有可能是昨天就买入了,今天保持持有的状态。
因为股票就买卖一次,如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来
- 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
- 因为股票就买卖一次,如果第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]
那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);
如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来
- 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
- 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]
同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];
dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;
class Solution {
public:int maxProfit(vector<int>& prices) {vector<vector<int>>dp(prices.size()+1,vector(2,0));dp[0][0]=-prices[0];dp[0][1]=0;for(int i=1;i<prices.size();i++){dp[i][0]=max(dp[i-1][0],-prices[i]);dp[i][1]=max(dp[i-1][1],dp[i-1][0]+prices[i]);}return dp[prices.size()-1][1];}
};
122.买卖股票的最佳时机II
力扣题目链接
(opens new window)
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
-
示例 1:
-
输入: [7,1,5,3,6,4]
-
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。 -
示例 2:
-
输入: [1,2,3,4,5]
-
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。 -
示例 3:
-
输入: [7,6,4,3,1]
-
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
思路:与上一题类似,只是可以多次买卖,那么递推公式中不同之处在于dp[i][0] = max(dp[i - 1][0], dp[i - 1][1]-prices[i]);也就是第i天持有股票所拥有现金中的推导中,如果第i天不买股票,那么dp[i][0] = dp[i - 1][0],和第i-1天维持一致。如果第i天买股票了,由于买股票前需要将之前的股票抛出,那么此时dp[i][0] =dp[i - 1][1]-prices[i],即前一天抛售后获得的现金-今天买入股票所花的价格
class Solution {
public:int maxProfit(vector<int>& prices) {int len=prices.size();vector<vector<int>>dp(len+1,vector<int>(2,0));dp[0][0]=-prices[0];dp[0][1]=0;for(int i=1;i<len;i++){dp[i][0]=max(dp[i-1][0],dp[i-1][1]-prices[i]);dp[i][1]=max(dp[i-1][1],dp[i-1][0]+prices[i]);}return dp[len-1][1];}
};
参考:代码随想录
这篇关于代码随想录算法训练营第day47|121. 买卖股票的最佳时机 、 122.买卖股票的最佳时机II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!