GEE数据集——全球( 30 弧秒)尺度地下水模型GLOBGM v1.0数据集

2024-03-17 15:36

本文主要是介绍GEE数据集——全球( 30 弧秒)尺度地下水模型GLOBGM v1.0数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

全球尺度地下水模型GLOBGM v1.0

GLOBGM v1.0 数据集是全球地下水建模的一个重要里程碑,提供了 30 弧秒 PCR-GLOBWB-MODFLOW 模型的并行实施。该数据集由 Jarno Verkaik 等人开发,以赤道约 1 公里的空间分辨率全面展示了全球地下水动态。该数据集利用两个模型层和 MODFLOW 6 框架,利用现有的 30′′ PCR-GLOBWB 数据进行模拟,使研究人员能够探索全球范围的地下水流动态。计算实现采用消息传递接口并行化,便于在分布式内存并行集群上进行高效处理。

GLOBGM v1.0 数据集覆盖全球(不包括格陵兰岛和南极洲),有助于深入了解地下水行为的各个方面。尽管该数据集未经校准,但它利用美国地质调查局(USGS)国家水信息系统(NWIS)对美国毗连地区(CONUS)的水头观测数据进行了有限的评估。您可以点击此处阅读论文,以便更好地了解该方法。

讨论了在大型分布式内存并行集群上并行化 30′′ 分辨率(30 弧秒;赤道上 ∼ 1 公里)瞬态全球尺度地下水模型的各方面性能。该模型被称为 GLOBGM,是 PCR-GLOBWB 2(PCRaster Global Water Balance Model,PCRaster 全球水平衡模型)5′(5 弧分;赤道 ∼ 10 公里)地下水模型的后继模型,基于具有两个模型层的 MODFLOW。本研究使用的当前版本 GLOBGM(v1.0)也有两个模型层,未经校准,使用的是现有的 30′′ PCR-GLOBWB 数据。将模型分辨率从 5′ 提高到 30′ 会带来一些挑战,包括运行时间、内存使用量和数据存储量的增加,这些都超出了单台计算机的承受能力。我们的研究表明,我们的并行化方法能以相对较低的并行硬件要求解决这些问题,从而满足那些无法独享超级计算机中成百上千个节点的用户或建模人员的需求。

在模拟中,我们使用了非结构化网格和 MODFLOW 6 的原型版本,并利用消息传递接口对其进行了并行化处理。我们构建了总计 2.78 亿个活动单元的独立非结构化网格,以消除所有多余的海洋和陆地单元,同时满足所有必要的边界条件,并将其分布在三个大陆尺度的地下水模型上(1.68 亿个--非洲-欧亚大陆;0.77 亿个--美洲;0.16 亿个--澳大利亚),剩下的一个模型用于较小的岛屿(0.17 亿个)。四个地下水模型中的每个模型都被划分为多个不重叠的子模型,这些子模型在 MODFLOW 线性求解器中紧密耦合,每个子模型被唯一分配给一个处理器内核,相关子模型数据在预处理过程中使用数据块并行写入。为了提前平衡并行工作量,我们以两种方式应用了广泛使用的 METIS 图分割器:直接应用于所有(横向)模型网格单元,并以基于区域的方式应用于 HydroBASINS 集水区,这些集水区被分配给子模型,以便对未来与地表水的耦合进行预排序。我们考虑在荷兰国家超级计算机 Snellius 上进行一次试验,以每日时间步长和每月输入的方式模拟 1958-2015 年,包括 20 年的自旋。鉴于串行模拟需要 4.5 个月的运行时间,我们设定了最多 16 小时模拟运行时间的假设目标。我们的结果表明,12 个节点(每个节点 32 个内核;共 384 个内核)足以实现这一目标,在并行使用 7 个节点(224 个内核)时,最大的非洲-欧亚大陆模型的速度提高了 138 倍。

利用美国地质调查局 (USGS) 国家水信息系统 (NWIS) 对美国毗连地区的水头观测数据,对模型输出结果进行了有限的评估。结果表明,与 5 ′ PCR-GLOBWB 地下水模型相比,将分辨率从 5 ′提高到 30 ′,GLOBGM 在稳态模拟中的效果明显改善。然而,瞬态模拟的结果非常相似,还有很大的改进余地。不过,GLOBGM 和 PCR-GLOBWB 模型得出的月度和多年陆地总蓄水量异常值与 GRACE 卫星的观测结果相比还是比较理想的。要进一步改进下一版全球陆地水文地理信息模型,需要更详细的(水文)地质示意图和有关取水井位置、深度和抽水量的更多信息。

数据结构

本表提供了 GLOBGM 数据集模型栅格输出的结构概述,包括文件路径和每个文件的说明。

File PathDescription
/steady-state/globgm-heads-lower-layer-ss.tifComputed steady-state groundwater head [m] for the lower model layer
/steady-state/globgm-heads-lower-layer-ss.tifComputed steady-state groundwater head [m] for the upper model layer
/steady-state/globgm-wtd-ss.tifComputed water table depth [m] (sampled from upper to lower layer)
/transient_1958-2015/globgm-wtd-.tifComputed water table depth [m] (sampled from upper to lower layer)
/transient_1958-2015/globgm-wtd-bot-*.tifComputed water table depth [m] (lower layer only)

文章引用

Verkaik, Jarno, Edwin H. Sutanudjaja, Gualbert HP Oude Essink, Hai Xiang Lin, and Marc FP Bierkens. "GLOBGM v1. 0: a parallel implementation of a 30
arcsec PCR-GLOBWB-MODFLOW global-scale groundwater model." Geoscientific Model Development 17, no. 1 (2024): 275-300.

数据引用

Verkaik, J., Hughes J.D., Langevin, C.D., (2021). Parallel MODFLOW 6.2.1 prototype release 0.1 (6.2.1_0.1). Zenodo.

数据代码

var wtd = ee.ImageCollection("projects/sat-io/open-datasets/GLOBGM/TRANSIENT/WTD");
var wtd_bt = ee.ImageCollection("projects/sat-io/open-datasets/GLOBGM/TRANSIENT/WTD-BOTTOM");
var globgm_wtd_ss = ee.Image("projects/sat-io/open-datasets/GLOBGM/STEADY-STATE/globgm-wtd-ss");
var globgm_heads_lower_layer_ss = ee.Image("projects/sat-io/open-datasets/GLOBGM/STEADY-STATE/globgm-heads-lower-layer-ss");
var globgm_heads_upper_layer_ss = ee.Image("projects/sat-io/open-datasets/GLOBGM/STEADY-STATE/globgm-heads-upper-layer-ss");

Sample code: https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:hydrology/GLOBGM-GROUNDWATER-MODEL

License¶

GLOBGM v1.0 is open source and distributed under the terms of GNU General Public License v3.0, or any later version, as published by the Free Software Foundation.

Created by: Verkaik et al. 2024

Curated in GEE by : Samapriya Roy

Keywords: GLOBGM,groundwater,global-scale modeling,PCR-GLOBWB,MODFLOW,high performance computing

Last updated in GEE: 2024-02-04

 网址推荐

0代码在线构建地图应用 

https://sso.mapmost.com/#/login?source_inviter=nClSZANO

机器学习
https://www.cbedai.net/xg

这篇关于GEE数据集——全球( 30 弧秒)尺度地下水模型GLOBGM v1.0数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/819370

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了