pytorch中BCELoss、CrossEntropyLoss和NLLLoss

2024-03-17 14:18

本文主要是介绍pytorch中BCELoss、CrossEntropyLoss和NLLLoss,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在PyTorch中进行二分类,有三种主要的全连接层,激活函数和loss function组合的方法,分别是:torch.nn.Linear+torch.sigmoid+torch.nn.BCELoss,torch.nn.Linear+BCEWithLogitsLoss,和torch.nn.Linear(输出维度为2)+torch.nn.CrossEntropyLoss,BCEWithLogitsLoss集成了Sigmoid,但是CrossEntropyLoss集成了Softmax。

下面重点写写几点区别:

  • CrossEntropyLoss的输入logits=(3,2),target=(3)就够了,但是BCELoss、BCEWithLogitsLoss的输入得是logits=(3,2),target=(3,2)。也就是说BCE系列在设计的时候是期待把输出压缩成一维再过;但是CrossEntropyLoss是可以多维且每一维对应某一个类别的logit。
  • CrossEntropyLoss的target是LongTensor,表示是哪一类;但是BCE系列是0到1之间的FloatTensor
  • CrossEntropyLoss和BCE系列从数值上看除了0.5的情况下其他情况完全不一样。BCE系列的数值计算思路是target*log(logits)+(1-target)*log(1-logits);但是CrossEntropyLoss实际上是Softmax+NLLLoss, 最后数值计算思路变成-logits[sample_index][选中类别]+sum(exp(logits[sample_index][i]) for i in all),CE的推导可以参考信息熵 条件熵 交叉熵 联合熵 相对熵 KL散度 SCE MAE 互信息(信息增益)

来点代码:

import torch
from torch import nn
import mathloss_f = nn.CrossEntropyLoss(reduction='none')
output = torch.randn(2, 3)  # 表示2个样本,3个类别
# target = torch.from_numpy(np.array([1, 0])).type(torch.LongTensor)
target = torch.LongTensor([0, 2])  # 表示label0和label2
loss = loss_f(output, target)print('CrossEntropy loss: ', loss)
print(f'reduction=none,所以可以看到每一个样本loss,输出为[{loss}]')nll = nn.NLLLoss(reduction='none')
logsoftmax = nn.LogSoftmax(dim=-1)
print('logsoftmax(output) result: {}'.format(logsoftmax(output)))
#可以清晰地看到nll这个loss在pytorch多分类里作用就是取个负号,同时去target对应下标拿一下已经算好的logsoftmax的值
print('nll(logsoftmax(output), target) :{}'.format(nll(logsoftmax(output), target)))def manual_cal(sample_index, target, output):# 输入是样本下标sample_output = output[sample_index]sample_target = target[sample_index]x_class = sample_output[sample_target]sample_output_len = len(sample_output)log_sigma_exp_x = math.log(sum(math.exp(sample_output[i]) for i in range(sample_output_len)))sample_loss = -x_class + log_sigma_exp_xprint(f'交叉熵手动计算loss{sample_index}:{sample_loss}')return sample_lossfor i in range(2):manual_cal(i, target, output)# 如果nn.CrossEntropyLoss(reduction='mean')模式,刚好是手动计算的每个样本的loss取平均,最后输出的是一个值
# 如果nn.CrossEntropyLoss(reduction='none')模式,手动计算的loss0和loss1都会被列出来'''
贴一个输出
CrossEntropy loss:  tensor([2.7362, 0.9749])
reduction=none,所以可以看到每一个样本loss,输出为[tensor([2.7362, 0.9749])]
logsoftmax(output) result: tensor([[-2.7362, -1.4015, -0.3726],[-0.8505, -1.6319, -0.9749]])
nll(logsoftmax(output), target) :tensor([2.7362, 0.9749])
交叉熵手动计算loss0:2.736179828643799
交叉熵手动计算loss1:0.9749272465705872
'''

如果用Pytorch来实现,可以看以下脚本,顺带连rce(logit和pred对换)和sce(ce和rce加强)也实现了:

import torch.nn.functional as F
import torch
import torch.nn as nn
# nn.CrossEntropyLoss() 和  KLDivLoss 关系class SCELoss(nn.Module):def __init__(self, num_classes=10, a=1, b=1, eps=1e-18):super(SCELoss, self).__init__()self.num_classes = num_classesself.a = a #两个超参数self.b = bself.cross_entropy = nn.CrossEntropyLoss()self.cross_entropy_none = nn.CrossEntropyLoss(reduction="none")self.eps = epsdef forward(self, raw_pred, labels):# CE 部分,正常的交叉熵损失ce = self.cross_entropy(raw_pred, labels)# RCEpred = F.softmax(raw_pred, dim=1)pred = torch.clamp(pred, min=self.eps, max=1.0)label_one_hot = F.one_hot(labels, self.num_classes).float().to(pred.device)label_one_hot = torch.clamp(label_one_hot, min=self.eps, max=1.0) #最小设为 1e-4,即 A 取 -4my_ce = (-1 * torch.sum(label_one_hot * torch.log(pred), dim=1))print('pred={} label_one_hot={} my_ce={}'.format(pred, label_one_hot, my_ce))print('raw_pred={} labels={} official_ce={}'.format(raw_pred, labels, self.cross_entropy_none(raw_pred, labels)))rce = (-1 * torch.sum(pred * torch.log(label_one_hot), dim=1))print('pred={} label_one_hot={} rce={}'.format(pred, label_one_hot, rce))loss = self.a * ce + self.b * rce.mean()return lossy_pred = torch.tensor([[10.0, 5.0, -6.0], [8.0, 8.0, 8.0]])
y_true = torch.tensor([0, 2])
ce1 = SCELoss(num_classes=3)(y_pred, y_true)

来个各种CE的完整实现:

import torch
import torch.nn as nn
import torch.nn.functional as Fclass MyCE1(nn.Module):def __init__(self):super(MyCE1, self).__init__()self.nll = nn.NLLLoss(reduction='none')self.logsoftmax = nn.LogSoftmax(dim=-1)def forward(self, logits, targets):return self.nll(self.logsoftmax(logits), targets)class MyCE2(nn.Module):def __init__(self):super(MyCE2, self).__init__()def forward(self, logits, targets):label_one_hot = F.one_hot(targets, num_classes=max(targets)+1)logits_softmax_log = torch.log(logits.softmax(dim=-1))res = -1*torch.sum(label_one_hot*logits_softmax_log, dim=-1)return resif __name__ == '__main__':logits = torch.rand(4,3)targets = torch.LongTensor([1,2,1,0])myce1 = MyCE1()myce2 = MyCE2()ce = nn.CrossEntropyLoss(reduction='none')print(myce1(logits, targets))print(myce2(logits, targets))print(ce(logits, targets))
'''
tensor([0.8806, 0.9890, 1.1915, 1.2485])
tensor([0.8806, 0.9890, 1.1915, 1.2485])
tensor([0.8806, 0.9890, 1.1915, 1.2485])
'''

----------------------------------------

转载自: 二分类问题,应该选择sigmoid还是softmax? - 知乎 

pytorch验证CrossEntropyLoss ,BCELoss 和 BCEWithLogitsLoss - CodeAntenna

PyTorch二分类时BCELoss,CrossEntropyLoss,Sigmoid等的选择和使用 - 知乎

这篇关于pytorch中BCELoss、CrossEntropyLoss和NLLLoss的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/819193

相关文章

基于CTPN(tensorflow)+CRNN(pytorch)+CTC的不定长文本检测和识别

转发来源:https://swift.ctolib.com/ooooverflow-chinese-ocr.html chinese-ocr 基于CTPN(tensorflow)+CRNN(pytorch)+CTC的不定长文本检测和识别 环境部署 sh setup.sh 使用环境: python 3.6 + tensorflow 1.10 +pytorch 0.4.1 注:CPU环境

PyTorch模型_trace实战:深入理解与应用

pytorch使用trace模型 1、使用trace生成torchscript模型2、使用trace的模型预测 1、使用trace生成torchscript模型 def save_trace(model, input, save_path):traced_script_model = torch.jit.trace(model, input)<

pytorch国内镜像源安装及测试

一、安装命令:  pip install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple  二、测试: import torchx = torch.rand(5, 3)print(x)

PyTorch nn.MSELoss() 均方误差损失函数详解和要点提醒

文章目录 nn.MSELoss() 均方误差损失函数参数数学公式元素版本 要点附录 参考链接 nn.MSELoss() 均方误差损失函数 torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean') Creates a criterion that measures the mean squared err

动手学深度学习(Pytorch版)代码实践 -计算机视觉-37微调

37微调 import osimport torchimport torchvisionfrom torch import nnimport liliPytorch as lpimport matplotlib.pyplot as pltfrom d2l import torch as d2l# 获取数据集d2l.DATA_HUB['hotdog'] = (d2l.DATA_U

WSL+Anconda(pytorch深度学习)环境配置

动机 最近在读point cloud相关论文,准备拉github上相应的code跑一下,但是之前没有深度学习的经验,在配置环境方面踩了超级多的坑,依次来记录一下。 一开始我直接将code拉到了windows本地来运行,遇到了数不清的问题(如:torch版本问题、numpy版本、bash命令无法运行等问题),经过请教,决定将project放到linux系统上进行运行。所以安装WSL(Window

动手学深度学习(Pytorch版)代码实践 -计算机视觉-36图像增广

6 图片增广 import matplotlib.pyplot as pltimport numpy as npimport torch import torchvisionfrom d2l import torch as d2lfrom torch import nn from PIL import Imageimport liliPytorch as lpfrom tor

pytorch 使用GPU加速常见的问题

pytorch如何使用gpu加速 print(torch.cuda.is_available())# 设置gpu设备device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')# net使用GPUnet.to(device)# 数据copy到gpuinputData = inputData.to(devi

深度学习:关于损失函数的一些前置知识(PyTorch Loss)

在之前进行实验的时候发现:调用 Pytorch 中的 Loss 函数之前如果对其没有一定的了解,可能会影响实验效果和调试效率。以 CrossEntropyLoss 为例,最初设计实验的时候没有注意到该函数默认返回的是均值,以为是总和,于是最后计算完 Loss 之后,手动做了个均值,导致实际 Loss 被错误缩放,实验效果不佳,在后来 Debug 排除代码模型架构问题的时候才发觉这一点,着实花费了

《PyTorch计算机视觉实战》:一、二章

目录 第一章:人工神经网络基础 比较人工智能和传统机器学习 人工神经网络(Artificial Neural Network,ANN) 是一种受人类大脑运作方式启发而构建的监督学习算法。神经网络与人类大脑中神经元连接和激活的方式比较类似,神经网络接收输入并通过一个函数传递,导致随后的某些神经元被激活,从而产生输出。 有几种标准的 ANN 架构。通用近似定理认为,总是可以找到一