本文主要是介绍梯度提升算法(GBDT),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
GBDT(Gradient Boosting Decision Tree)算法是集成算法中的一种,它的最基本分类器为CART二分类回归树,集成方式为梯度提升。
CART二分类回归树
CART回归树是GBDT算法的最基本分类器,CART回归树决定了每次分类时,叶子结点只能分出两个树枝,它与ID3,C4.5是不同的。
CART回归树经常涉及到的一些问题:
选择哪个特征作为最优分裂特征?
怎么去切分一个特征?
确定分裂结束的条件?
模型的剪枝(后剪枝,预剪枝)?
Boosting
Boosting是一种模型的组合方式,我们熟悉的Adaboost就是一种Boosting的组合方式。
这里我们简述下Adaboost的核心思想。
首先我们拿到一个数据集,第一次切分是随意的,我们将数据集分为红色和蓝色两类,可以看到我们的红色数据集中含有蓝色的数据,然后调整权重,对于分错的数据,增加其权重,对于分对的数据,减小权重,再次进行切分,直到将两类数据彻底分开。
Adaboost的过程如下,它是在进行完一次切分之后(一次切分是指将两种类别完全分开),再进行第二次,第二次切分仍是原始数据集开始,之后进行第三次直到第n次。
Adaboost算法最终的结果:由每次算法结果叠加而来,α1,α2,α3是每一种结果的权重,哪种结果比较好,相应的α值就比较大。
Adaboost与随机森林都属于集成算法,随机森林是通过每次并行使用大量的树(通过树的多样性)来提升效果,同时随机森林也有其极限值,当树的规模达到一定程度时,效果无法再得到提升。Adaboost通过串行的方式,对每一次的分类结果赋一个权重值,最后通过累加的方式求得最终结果。
Gradient Boosting
GBDT算法是通过梯度提升的方式不断的优化参数,直到达到局部最优解。GBDT算法每一步优化的对象是不同的。第一步是以label值为目标,来优化参数。第二步优化的目标就是第一步的残差,第三步优化的目标是第二步的残差,以此类推。最终的预测结果:F(x) = f1(x) + f2(x) +···+fn(x)。
GBDT算法的数学表达形式:
第m次的结果等于第m-1次的结果加上第m-1次所预测的残差。GBDT通过不断模型的迭代,来减小残差,达到无限逼近目标值的效果。
GBDT算法要优化的目标函数如下:
对损失函数Hm求一阶偏导,按照逆梯度的方式求解最优参数。
GBDT API文档介绍
GBDT官方文档:https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
GradientBoostingClassifier(loss=’deviance’, learning_rate=0.1, n_estimators=100,
subsample=1.0, criterion=’friedman_mse’, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0,
min_impurity_split=None, init=None, random_state=None, max_features=None, verbose=0,
max_leaf_nodes=None, warm_start=False, presort=’auto’, validation_fraction=0.1,
n_iter_no_change=None, tol=0.0001)
GBDT算法参数说明:
learning_rate:学习率控制着模型参数改变的大小,默认=0.1
n_estimators:回归树的数量,默认 = 100
subsample:采样的比例,默认 = 1
min_samples_split:分类节点的最小样本数,小于这个值,叶子节点是不可再分的,默认 = 2
min_samples_leaf:叶子节点的最小样本数,默认 = 1
min_weight_fraction_leaf:样本的权重
max_depth:回归树的最大深度,默认 = 3
max_features:最好特征的个数,随机选择。
max_leaf_nodes:叶子节点的数量。
min_impurity_decrease:一个节点能否再分,取决于熵值的降低值是否大于指定值。
GBDT算法样例演示
Mnist数据集:链接:https://pan.baidu.com/s/1Tz573QiMLuaD-fEXcr4qYA
提取码:xozg
import gzip
import pickle as pkl
from sklearn.model_selection import train_test_splitdef load_data(path):f = gzip.open(path,'rb')train_set,valid_set,test_set = pkl.load(f,encoding = 'latin1')f.close()return(train_set,valid_set,test_set)path = 'D:\\Py_dataset\\mnist.pkl.gz'
train_set,valid_set,test_set = load_data(path)
Xtrain,_,ytrain,_ = train_test_split(train_set[0],train_set[1],test_size = 0.9)
Xtest,_,ytest,_ = train_test_split(test_set[0],test_set[1],test_size = 0.9)from sklearn.ensemble import GradientBoostingClassifier
import numpy as np
import timeclf = GradientBoostingClassifier(n_estimators = 10,learning_rate = 0.1,max_depth = 3)
start_time = time.time()
clf.fit(Xtrain,ytrain)
end_time = time.time()
print('The training time {}'.format(end_time - start_time))pred = clf.predict(Xtest)
accuracy = np.sum(pred == ytest)/pred.shape[0]
print('Test accuracy {}'.format(accuracy))
The training time 19.14890456199646 #模型的训练时间
Test accuracy 0.829 #精度值#集成算法都可以获得特征的重要程度
import matplotlib.pyplot as plt
plt.hist(clf.feature_importances_)
plt.show()
特征重要性分布图,横轴代表重要性,纵轴代表特征数量。
GBDT算法小结
相比较单一算法,集成算法的效果更好。GBDT是一种boosting形式的集成算法,通断不断的优化残差值,最后达到一个非常好的效果。随机森林是一种bagging的算法,通过并行训练大量的模型,通过模型的多样性去达到一个非常不错的效果。
这篇关于梯度提升算法(GBDT)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!