【PID优化】基于萤火虫算法PID控制器优化设计含Matlab源码

2024-03-17 11:59

本文主要是介绍【PID优化】基于萤火虫算法PID控制器优化设计含Matlab源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 内容介绍

PID控制器仍是现今应用最广的控制器.但由于其被控对象具有高阶非线性等特点,传统的PID参数整定方法使系统易出现超调,震荡,控制系统性能变差等问题.

2 部分代码

%% 清空环境变量

clc;

clear;

%% 初始化参数

domx = [-3, 3; -3, 3];       % 定义域

rho = 0.9;                   % 荧光素挥发因子

gamma = 0.1;                 % 适应度提取比例

beta = 0.58;                 % 邻域变化率

nt = 6;                      % 邻域阀值(邻域萤火虫数)

s = 0.03;                    % 步长

iot0 = 400;                  % 荧光素初始浓度

rs = 3;                      % 感知半径

r0 = 3;                      % 决策半径

m = size(domx, 1);           % 函数空间维数

n = 50;                      % 萤火虫数量

gaddress = zeros(n, m);      % 分配萤火虫地址空间

gvalue = zeros(n, 1);        % 分配适应度存放空间

ioti = zeros(n, 1);          % 分配荧光素存放空间

rdi = zeros(n, 1);           % 分配萤火虫决策半径存放空间

%% 萤火虫常量初始化

% 初始化地址

for i = 1:m

    gaddress(:, i) = domx(i, 1)+(domx(i, 2)-domx(i, 1))*rand(n, 1);

end

% 初始化荧光素浓度

ioti(:, 1) = iot0;

% 初始化决策半径

rdi(:, 1) = r0;

iter_max = 500;            % 最大迭代次数

t = 1;                     % 迭代计数器

yy = zeros(iter_max, 1);   % 各代最优解

%% 迭代寻优

while t <= iter_max

    % 更新荧光素浓度

    ioti = (1-rho)*ioti+gamma*fun(gaddress);

    % 各萤火虫移动过程开始

    for i = 1:n

        % 决策半径内找更优点

        Nit = [];                 % 存放萤火虫序号

        for j = 1:n

            if norm(gaddress(j, :)-gaddress(i, :)) < rdi(i) && ioti(i, 1) < ioti(j, 1)

                Nit(numel(Nit)+1) = j;

            end

        end

        % 找下一步移动的点开始

        if ~isempty(Nit)           

            Nitioti = ioti(Nit, 1);              % 选出Nit荧光素

            SumNitioti = sum(Nitioti);           % Nit荧光素和

            Molecular = Nitioti-ioti(i, 1);      % 分子

            Denominator = SumNitioti-ioti(i, 1); % 分母

            Pij = Molecular./Denominator;   % 计算Nit各元素被选择概率

            Pij = cumsum(Pij);        % 累计

            Pij = Pij./Pij(end);      % 归一化

            Pos = find(rand < Pij);   % 确定位置

            j = Nit(Pos(1));          % 确定j的位置

            % 萤火虫i向j移动一小步

            gaddress(i, :) = gaddress(i, :)+s*(gaddress(j, :)-gaddress(i, :))/norm(gaddress(j, :)-gaddress(i, :));

            % 边界处理(限制范围)

            gaddress(i, :) = min(gaddress(i, :), domx(1, 2));        

            gaddress(i, :) = max(gaddress(i, :), domx(1, 1)); 

            % 更新决策半径

            rdi(i) = rdi(i)+beta*(nt-length(Nit));

            if rdi(i, 1) < 0

                rdi(i, 1) = 0;

            end

            if rdi(i, 1) > rs

                rdi(i, 1) = rs;

            end

        end

    end

    % 每代最优解存入yy数组内

    yy(t) = max(fun(gaddress));

    % 迭代次数+1

    t = t+1;

end

%% 结果显示

gvalue = fun(gaddress);               % 求各个萤火虫的值

disp('最大值为:')

num = find(gvalue == max(gvalue));    % 最大值序号

MaxValue = max(gvalue)

disp('最优解为:')

BestAddress = gaddress(num, :)

figure;

plot(yy, 'r', 'linewidth', 2)

xlabel ('迭代次数'); ylabel( '函数值');

title( 'GSO算法各代最优解变化');

3 运行结果

4 参考文献

[1]李远梅, 张宏立. 基于改进萤火虫算法PID控制器参数优化研究[J]. 计算机仿真, 2015, 32(9):4.

[2]李恒, 郭星, 李炜. 基于改进的萤火虫算法的PID控制器参数寻优[J]. 计算机应用与软件, 2017, 34(7):4.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机、雷达通信、无线传感器等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

这篇关于【PID优化】基于萤火虫算法PID控制器优化设计含Matlab源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/818887

相关文章

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

MyBatis设计SQL返回布尔值(Boolean)的常见方法

《MyBatis设计SQL返回布尔值(Boolean)的常见方法》这篇文章主要为大家详细介绍了MyBatis设计SQL返回布尔值(Boolean)的几种常见方法,文中的示例代码讲解详细,感兴趣的小伙伴... 目录方案一:使用COUNT查询存在性(推荐)方案二:条件表达式直接返回布尔方案三:存在性检查(EXI

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

详解如何在SpringBoot控制器中处理用户数据

《详解如何在SpringBoot控制器中处理用户数据》在SpringBoot应用开发中,控制器(Controller)扮演着至关重要的角色,它负责接收用户请求、处理数据并返回响应,本文将深入浅出地讲解... 目录一、获取请求参数1.1 获取查询参数1.2 获取路径参数二、处理表单提交2.1 处理表单数据三、

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索