在线大数据学习效果怎么样,在线学习过程性评价系统工作流程分为哪几步?

本文主要是介绍在线大数据学习效果怎么样,在线学习过程性评价系统工作流程分为哪几步?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在线大数据学习效果怎么样?在线学习过程性评价系统工作流程总共分为六个大的步骤,充分说明了大数据支持下的过程性评价嵌入在线学习之中的路径和方法。

在线大数据学习效果怎么样?

第一步,学习者开展在线学习活动,并随之生成学习行为的数据,经过在线学习内容与服务模块,这些数据将被贴附时间戳标记。

第二步,数据按照预定义结构存入学习者学习状态信息库。

第三步,在线学习过程性评价引擎从学习者特征信息库和学习状态信息库中收集数据,依据不同的评价指标和内容,选择不同的方法和模型,对学习者的学习实施过程性评价。

第四步,个性化诊断与引导引擎根据过程性评价引擎分析的结果,通过内容与服务模块为学习者提供有针对性的在线学习诊断服务,预测未来表现并发现潜在的问题,实施个性化引导。

第五步,过程性评价引擎的分析结果被同步传递给评价信息可视化仪表盘,供在线教学者、学伴和专家使用,也提供给在线学习者,帮助其精准了解自己的学习过程和状态,开展自我评价和反思,提高学习绩效。

第六步后,在线教学者、专家根据仪表盘提供的可视化反馈信息,及时评估学习者的进步和表现,提升个性化在线学习的品质。

数据沿着“数据—处理与存储—融合—分析—评价—反馈和优化”的流程,价值不断增加,从最基本的记录到预测未来趋势,向过程性及时引导和调整转变,其中数据是资产,分析和挖掘是技术,过程性评价是手段,促进更加有效的学习是目标。

在线大数据学习效果怎么样?

(一)在线学习过程性活动记录子系统

虚拟的在线学习过程可以看作是五类元素的组合,即学习者、学习资源、交互、事件以及学习结果。这五个元素之间相互影响,密切相关,共同构成系统的在线学习活动。根据在线学习活动属性与关键内容,我们将记录子系统中的过程性活动分为互动交流、资源使用、学习作品、资源分享、平台利用、自我评价、学伴评价、教师点评、学习反思和成长记录等核心活动。

Web爬虫具有目标信息采集准确、应用配置简单的特征,是在线数据记录非常有效的方式。另外,该技术在记录数据的同时,还能执行数据过滤的功能,非常适合大数据背景下在线学习环境的特征。记录子系统利用Web爬虫记录学习活动数据,为下一步的数据处理与存储子系统提供数据来源。

(二)数据处理与存储子系统

数据处理与存储子系统主要包括数据采集、清洗、存储和数据转化四大模块。

其中,数据采集模块实现“采”和“集”两个功能,“采”实现记录系统所提供数据的针对性、价值性、精准性抓取;“集”则按照一定规则和筛选标准进行数据汇聚。如果数据的源头存在垃圾,那么产出的很难是金子。数据清洗模块的作用就是过滤掉“垃圾信息”,尽可能保证入库数据的正确性。数据转化模块在数据层级进行数据格式的统一与数据分类变量重组等工作,将数据转化成为适合融合与挖掘的形式。

数据存储的主要任务是按照数据模型定义的表结构,将转化模块提交的数据集存入数据库中,以防止数据丢失。子系统将结构化数据存储于关系型的开源数据库MySQL中,非结构化与半结构化数据将存储于非关系型(NoSQL)的开源分布式数据库HBase中。HBase是面向列的分布式开源数据库,它和大数据分布式处理框架Hadoop紧密关联,主要包括Client(访问入口)、Zookeeper(协调服务)、HRegionServer(表数据读写操作)、HMaster(HRegionServer行为监视)四个核心组件,可提供过程性评价数据的实时随机读/写访问。

(三)数据融合子系统

数据融合子系统通过在数据间、信息间、知识片段间建立多维度、多粒度的语义连通,形成面向多层次知识提取的数据集合,解决数据的碎片化问题。在参考现代教育评价理论和在线学习理论的基础上,本研究将过程性学习数据融合为四类核心内容,分别是:

学习态度相关数据,主要表现在线学习者学习过程的认真程度,用以衡量学习任务完成量方面的数据;

学习方法相关数据,主要是完成学习任务的行为或操作性知识方面的数据;

学习过程相关数据,主要为学习者在学习情境中与教学者、学伴,以及资源环境的交互而产生的数据,包括知识、技能和态度等核心内容;

自评他评数据,主要是来自于学生自评、学伴互评和教师点评方面的数据。

通过小数据的融合,系统打通了过程性学习评价的数据孤岛,为进一步数据分析提供了支持。

(四)在线学习过程性数据分析子系统

在线学习过程数据分析子系统从多个维度挖掘融合后数据中的有价值信息,对学习者的个体学习过程进行画像。其中,数据挖掘综合运用数学统计、关联规则和决策树等方法,分析学习者学习过程与学习内容、学习状态等变量的相关关系,帮助评价系统针对学习者的特征开展精准知识推荐和引导。机器学习主要研究计算机如何模拟人类利用已知事实规律获取新知识的智慧。应用机器学习方法可以模拟人类智慧,分析学习者的学习状态、学习行为及其潜在的影响因素,针对性地刻画个体行为特征和在线学习的风格。

学习分析技术是测量、收集和分析有关学习数据,以理解和优化学习及其产生情境的技术。《2016新媒体联盟中国基础教育技术展望:地平线项目区域报告》认为:“大数据学习分析技术将在未来两至三年成为极具影响力的教育技术”。

学习分析技术能够帮助系统对学习者的学习结果进行评估,理解和优化在线学习及其产生的情境,预测学习者的发展趋势,为过程性评价提供实时反馈信息。

模式识别利用计算机代替人对学习行为信息进行处理和识别,它通过样本获取、特征抽取、类型识别和过程性评判等核心步骤,实现学习过程特征的描述、识别和分类。SNA(SocialNetworkAnalysis,社会网络分析)从社会关系网络结构出发,计算学习者在学习社群中的位置、角色、声望和群体属性等信息,分析学习者在线学习社群网络形成的过程与特征,从而为学习者的积极性和交互程度判断提供依据。

(五)在线学习过程性评价子系统

过程性评价将评价“嵌入”到学习过程中,主张对学习的动机、参与过程和学习效果进行三位一体的评价。如下表所示,本研究将依据一定的评价标准和指标,从学习动机、学习参与过程、学习效果三个维度开展评价。评价不仅关注学习效果,而且关注影响学习者学习投入的动机以及知识积累的过程,将评价活动和过程作为被评价者展示自己进步和成绩的平台,让学习者主动参与到学习与评价活动中去。

学习动机是激发个体学习,并使学习行为趋向一定目标前进的心理动因和倾向,具有方向性、驱动性、行为导向性和持久性的特征。学习者往往对感兴趣、有价值、处于能力范围内并可带来成就感的学习内容投入更多的时间和精力,从中获得较大的满足感。学习动机评价将从知识价值的认识(知识价值观)、对学习的直接兴趣(学习兴趣)、对自身学习能力的认识(学习能力感)、对学习成绩的归因(成就归因)四个方面展开。

学习参与注重建立伙伴关系,是一种主动的个性化学习体验。纽曼将学习过程中的参与看作是行为参与、情感参与和认知参与的有机组合,这种划分思想得到了研究者们的普遍认同。在师生分离、生生分离的在线学习状态下,过程性评价子系统通过对行为(内容互动、学伴互动、师生互动、学习环境互动)、情感(兴趣、成功、焦虑、厌倦等),以及认知(记忆、理解、运用、分析、评价、创造和知识掌握等)三个维度的学习参与评价,分析学习个体多方面潜能的自由发展和个性化表现。

学习效果是在线学习者完成课程学习之后能力提升的程度,增值是学习效果的主要表达方式。阿斯汀的学生参与理论(StudentInvolvementTheory)将学习效果解释为能力获得程度的认定,从动态角度解释了学习质量的提高过程,受到广泛关注。

在参考阿斯汀思想的基础上,系统根据过程性评价理念和在线学习的特征,从高层次思维能力(探究问题的能力、批判思维的能力、创造性思维能力,以及知识的综合应用能力等)、知识应用与实践能力(发现问题、解释问题、分析问题和解决问题的能力)、在线协作能力(交流、沟通与在线协作学习能力)、自我学习与发展能力(自主信息收集与阅读、信息整合与终身学习能力等)和其他综合能力(学科视野、创新能力、信息素养)等五个核心内容出发,展开学习效果过程性评价。

通过评价子系统提供的学习质量反馈信息,在线教学者可更清楚地了解学习者的学习状态和效果,对教学策略展开反思与内省,并针对个体差异展开积极的引导、干预和学习路径调整推荐。在线学伴从协作视角判断过程性成果价值,通过协同与互助等方式共同构建良性的同侪互动。利用来自于评价子系统、教学者和学伴的反馈信息,学习者能更好地认识自己的优势和不足,及时纠正问题。

过程性学习评价强调,课程知识内容的建构是有意义的观点和思想产生并不断改进的过程。大数据背景下,贯穿于在线学习始终的过程性评价在学习者个体知识的不断建构与发展中,实现在线教学、学习和评价的有机融合

人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:


多智时代-人工智能大数据学习入门网站|人工智能、大数据、物联网云计算的学习交流网站

多智时代-人工智能大数据学习入门网站|人工智能、大数据、云计算、物联网的学习服务的好平台

这篇关于在线大数据学习效果怎么样,在线学习过程性评价系统工作流程分为哪几步?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/818687

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

PLsql Oracle 下载安装图文过程详解

《PLsqlOracle下载安装图文过程详解》PL/SQLDeveloper是一款用于开发Oracle数据库的集成开发环境,可以通过官网下载安装配置,并通过配置tnsnames.ora文件及环境变... 目录一、PL/SQL Developer 简介二、PL/SQL Developer 安装及配置详解1.下

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper