本文主要是介绍基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
1.程序功能描述
2.测试软件版本以及运行结果展示
3.核心程序
4.本算法原理
5.完整程序
1.程序功能描述
基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真。太阳黑子是人们最早发现也是人们最熟悉的一种太阳表面活动。因为太阳内部磁场发生变化,太阳黑子的数量并不是固定的,它会随着时间的变化而上下波动,每隔一定时间会达到一个最高点,这段时间就被称之为一个太阳黑子周期。太阳黑子的活动呈现周期性变化是由施瓦贝首次发现的。沃尔夫 (R.Wolfer)继而推算出11年的周期规律。实际上,太阳黑子的活动不仅呈11年的周期变化,还有海耳在研究太阳黑子磁场分布时发现的22年周期;格莱斯堡等人发现的80年周期以及蒙德极小期等。由于太阳黑子的活动规律极其复杂,时至今日科学家们仍在努力研究其内在的规律和特性。事实上,对太阳黑子活动规律的研究不仅具有理论意义,而且具有直接的应用需求。太阳黑子的活动呈现周期性变化的,沃尔夫(R.Wolfer)根据在过去的288 年(1700年~1987 年)间每年太阳黑子出现的数量和大小的观测数据推算出11 年的周期规律。我们利用Matlab强大的数据处理与仿真功能,对Wolfer数进行功率谱密度分析从而可以得到对太阳黑子活动周期的结论。
2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
3.核心程序
.................................................................................
ind = 0;
kk=300;
for k=1:length(SSN)+Predict_Len; %开始求K if k <= length(SSN)Y_predict3(k) = c(1,k) + c(2,k)*k + c(3,k)*yc(k) + c(4,k)*ys(k) + c(5,k)*yc2(k) + c(6,k)*ys2(k) + c(7,k)*yc3(k) + c(8,k)*ys3(k); else %Y_predict3(k) = c(1,end) + c(2,end)*k + c(3,end)*yc(k) + c(4,end)*ys(k) + c(5,end)*yc2(k) + c(6,end)*ys2(k) + c(7,end)*yc3(k) + c(8,end)*ys3(k); c0 = mean(c(1,end-kk-1:end-kk));c1 = mean(c(2,end-kk-1:end-kk));c2 = mean(c(3,end-kk-1:end-kk));c3 = mean(c(4,end-kk-1:end-kk));c4 = mean(c(5,end-kk-1:end-kk));c5 = mean(c(6,end-kk-1:end-kk));c6 = mean(c(7,end-kk-1:end-kk));c7 = mean(c(8,end-kk-1:end-kk));Y_predict3(k) = c0 + c1*k + c2*yc(k) + c3*ys(k) + c4*yc2(k) + c5*ys2(k) + c6*yc3(k) + c7*ys3(k); ind = ind + 1;Ys(ind) = Y_predict3(k);end
end
figure;plot(YEAR2,SSN,'r');hold off;
legend('预测SSN','实际SSN');
grid on;%根据预测结果得到下次太阳黑子活动高峰和低峰的时间
%前一次高峰日期为XX = 59;
[Vmax1,Imax1] = max(Ys);
[Vmax2,Imax2] = max(SSN(length(SSN)-XX:length(SSN)));%3100~3160if Vmax1 > Vmax2II = Imax1;MM = Vmax1; time = (length(SSN) + II-3019);%原数据的最后一个月份+预测后的最大值 - 前一个高峰日期
elseII = Imax2;MM = Vmax2; time = (length(SSN) + (XX-II)-3019);%原数据的最后一个月份+预测后的最大值 - 前一个高峰日期
end
Years=time/12;fprintf('下次高峰期日期为:%d',round(2000 + Years));
fprintf('年\n\n');
fprintf('最大值为:%2.2f\n\n\n\n',MM);%计算下一次低谷值
[Vmin,Imin] = min(Ys);
fprintf('下次低峰期日期为:%d',round(2012 + Imin/12));
fprintf('年\n\n');
fprintf('最小值为:%2.2f\n\n',Vmin);
16_013m
4.本算法原理
在研究太阳黑子活动时,通常会选择一个合适的物理或统计模型来描述其周期性变化规律。例如,可以选择Hale-Stark定律、Schwabe周期或者某种动力学系统模型等。为了确定模型中的未知参数,我们可以利用历史观测数据采用最小二乘法进行参数辨识。
最小二乘法:
假设我们有一个拟合模型 f(x,θ),其中x 是时间变量,θ=[θ1,θ2,...,θn] 是待估计的模型参数向量。已知一系列太阳黑子活动观测数据yi 对应于时间点 xi (i=1, 2, ..., m),目标是通过调整参数 θ 来使模型输出与实际观测值之间的误差平方和最小。这个优化问题可以用以下数学公式表示:
参数辨识步骤:
- 初始化参数:首先为模型参数设定初始值。
- 构建目标函数:根据上述公式构建误差平方和作为目标函数。
- 求解最优参数:运用梯度下降法、牛顿法或其他优化算法找到使目标函数极小化的参数值θ^。
模型预测
一旦通过最小二乘法得到最佳参数估计θ^,就可以使用此参数对未来的太阳黑子活动进行预测:
应用实例 以一个简单的线性模型为例(虽然太阳黑子活动通常具有非线性特征):
这里的参数向量θ=[θ0,θ1],分别代表截距和斜率。采用最小二乘法就是要找出使得下式最小的 θ0 和θ1:
在实际应用中,针对太阳黑子活动这类复杂的自然现象,可能需要选择更高级别的非线性模型,并结合其他科学理论和观测数据进行分析。同时,对于复杂模型,可能会涉及更多优化方法和技术,如正则化最小二乘法以防止过拟合等问题。
5.完整程序
VVV
这篇关于基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!