java数据结构与算法刷题-----LeetCode376. 摆动序列

2024-03-17 09:04

本文主要是介绍java数据结构与算法刷题-----LeetCode376. 摆动序列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846

文章目录

    • 1. 贪心
    • 2. 动态规划
    • 3. 优化版动态规划

在这里插入图片描述

1. 贪心

解题思路:时间复杂度O( n n n),空间复杂度O( 1 1 1)
  1. 将序列想象成一座山峰,这个山峰由石块构成,我们爬这作山峰,可以前进,所以对我们来说,只有前面的石块和后面的石块。
  2. 对我们来说,我们的路线就会有上坡(前面的石块高度(海拔)>后面的石块),下坡(前面的石块海拔<后面的石块),平坡(每块石头的海拔都一样)
  3. 题目就是让我们统计,只保留上下坡的情况下,上坡和下坡依次摆动,共摆动了几次

题目特殊要求:

  1. 只要有一块石头,就可以算一个坡。例如整座山就一块石头[1],那么就算一个摆动。因为爬上这块石头,算上坡,爬下这块石头,算下坡
  2. 有2块石头,但是构成的是平坡,那么只算一个摆动。例如[1,1],两个石头大小一样。爬上第一块石头算上坡,从第一块到第二块石头,只是直走,没有爬坡。然后从第二块石头下去,算下坡。依然是一个上坡,一个下坡,构成一个摆动。
  3. 有两块石头,但是构成的不是平坡,那么算2个摆动。例如[1,2]. 题目要求的。爬上第一块石块算一个摆动,爬下最后一块石头也算一个摆动。
  4. 上坡+平坡+上坡,或者下坡+平坡+下坡,属于没换坡,例如[1,2,2,3],只有两个摆动。爬上1算一个摆动,然后1-2是上坡,2-2是平坡,2-3还是上坡,没有坡度变化,都不算坡。最后爬下最后一块石头3,算一个坡。最终共两个坡。
代码

在这里插入图片描述

class Solution {public int wiggleMaxLength(int[] nums) {int n = nums.length;if (n < 2) return n;//元素小于2个,就只有n个摆动int prevdiff = nums[1] - nums[0];//记录当前坡上的差值,是上坡还是下坡,这里不记录平坡int ret = prevdiff != 0 ? 2 : 1;//如果是平坡,就只有1个摆动,如果是上坡或者下坡就有2个摆动(题目规定)for (int i = 2; i < n; i++) {//之后还有坡,就继续统计int diff = nums[i] - nums[i - 1];//看看当前是什么坡,上坡,还是下坡,还是平坡//如果是平坡,下次变坡后,必须通过prevdiff来获取,平坡之前是什么坡//如果变坡后,和平坡之前不同,才能称为换坡了,否则还是没有换坡,也就不是摆动if ((diff > 0 && prevdiff <= 0) || (diff < 0 && prevdiff >= 0)) {//如果换坡了(上坡变下坡,或者下坡变上坡)ret++;//换坡了,摆动+1prevdiff = diff;//换坡后,prevdiff变成这个坡的坡度(上坡还是下坡)。以方便寻找下一个不同的坡度}}return ret;//将换坡次数返回}
}

2. 动态规划

解题思路:时间复杂度O( n n n),空间复杂度O( n n n)

用动态规划来实现上面贪心的思想

动态规划5步曲
  1. DP数组及下标含义
  1. 我们要求出的是到当前石头为止,坡度上下变化的次数。显然dp数组中存储的是坡度摆动次数。要求出谁的?显然是求出,从起始石头到当前石头的。那么下标就是代表当前是哪块石头。但是如何知道前一块是上坡还是下坡呢?我们可以创建两个数组,一个是当前石头上坡时候用,一个下坡时候用。很显然,需要一个下标,两个数组。
  1. 递推公式:dp[]和down[]数组分别用于上坡和下坡
  1. 只要有石头,那么摆动就有1,具体请参考上面的"法一:贪心"的解析。所以up[0] = down[0] = 1.
  2. 从第二块石块开始后面的每一块石头,记为第i块石头。
  3. 我们分别获取up[i-1],down[i-1],它们保存到前一块石头的路径摆动次数。则他俩里面大的那个,一定是上块石头的坡度。因为上一块石头,如果是上坡就放入up,下坡就放入down
  4. 如果第i块石块,是上坡,我们获取Math.max(up[i-1],down[i-1]),如果结果是down[i-1]更大,说明上一块是下坡,而第i块是上坡。则摆动+1.
  5. 依次类推,得到公式:
  1. i是上坡,up[i] = Math.max(up[i-1],down[i-1]+1). down[i] = down[i-1]. 其中down[i] = down[i-1]是因为i石块不是下坡,用不着down,但是down[i]下次会用到,所以将[i-1]的值给[i]

Math.max(up,down)获取的是i-1的坡度,down[i-1]+1,是如果i-1是下坡,那么到i位置的路径摆动次数是i-1的摆动次数+1。因为如果i-1是下坡,而现在i是上坡,down[i-1]就是到前一块路径的摆动次数,i是上坡,要增加一次摆动。等价于如下代码:

int num = Math.max(up[i-1],down[i-1]);
boolean flag = true;//上一个石头默认是上坡
if(num  == down[i-1]) flag = false;//上一个石头是下坡
if(flag) up[i] = up[i-1];//上一个也是上坡,那么摆动不变
else up[i] = down[i-1]+1;//上一个是下坡,那么摆动+1
  1. i是下坡,up[i] = up[i-1]; down[i] = Math.max(up[i-1]+1),down[i-1]
  2. i是平坡,up[i] = up[i-1];down[i] = down[i-1];
  1. dp数组初始化

在这里插入图片描述

  1. 数组遍历顺序:一维数组,无需考虑
代码

在这里插入图片描述

class Solution {public int wiggleMaxLength(int[] nums) {//和贪心一样int n = nums.length;if (n < 2) return n;//dp数组表示,当前石块i,如果是上坡的,就放入up中,如果是下坡的,就放入down中,然后计算到这块石头为止的摆动//up表示上坡,down表示下坡。dp数组的下标表示,第几块石头//例如up[1],就是第一块石头如果是上坡,到它为止的路径,它的最大摆动是多少//down[3]就是第3块石头,如果是下坡,到它为止的路径,最大摆动是多少/**则dp数组的值保存的就是 到第i块石块,摆动的数量 */int[] up = new int[n];int[] down = new int[n];up[0] = down[0] = 1;//有石头就有一个摆动,无论上坡,还是下坡,都算一个摆动。for (int i = 1; i < n; i++) {//从第一块石头开始规划坡度if (nums[i] > nums[i - 1]) {//如果当前石块是上坡//当前石块应该放入上坡UP中,获取前一块石头的信息,前一块如果也是上坡,则摆动数量不变,前一块是下坡,那么摆动+1. //对于我们来说,我们不知道前一块是上坡还是下坡,但是上一块石头的路径摆动,一定放入了dp数组//而且一定是最大的,所以up[i-1]和down[i-1],就是获取前一块石头的最大摆动up[i] = Math.max(up[i - 1], down[i - 1] + 1);//必须两个一起获取,因为不知道前一块是上坡还是下坡//当前石块i是上坡,无法放入下坡,所以对于down来说,只能抛弃这块石头,那么摆动不变down[i] = down[i - 1];//让其继承前一块石头的坡度} else if (nums[i] < nums[i - 1]) {//如果当前石块是下坡up[i] = up[i - 1];//和上坡没有关系,抛弃这块石头//获取前一块石头的信息,如果是上坡,那么摆动+1,如果是下坡,摆动不变。down[i] = Math.max(up[i - 1] + 1, down[i - 1]);} else {//如果是平坡up[i] = up[i - 1];//摆动不变down[i] = down[i - 1];//摆动不变}}//到最后一块石头石,我们也不知道最后一块是上坡还是下坡。只知道到它为止的摆动,放入了up[n-1]和down[n-1]//而且肯定是大的那个return Math.max(up[n - 1], down[n - 1]);}
}

3. 优化版动态规划

解题思路:时间复杂度O( n n n),空间复杂度O( 1 1 1)

将法二的dp数组优化掉,换成了两个变量
因为法二中,虽然是dp数组,但是我们每次只使用前一个值罢了

代码

在这里插入图片描述

  1. 基于法二,单纯将数组换成变量
class Solution {public int wiggleMaxLength(int[] nums) {int n = nums.length;if (n < 2) return n;int up = 1, down = 1;//将dp数组,换成两个变量for (int i = 1; i < n; i++) {if (nums[i] > nums[i - 1]) {//如果是上坡up = Math.max(up, down + 1);//看前一个是不是上坡,不是就摆动+1} else if (nums[i] < nums[i - 1]) {//如果是下坡down = Math.max(up + 1, down);//上一个是上坡,就摆动+1}}return Math.max(up, down);}
}
  1. 我们发现,上坡的话,up的值不变,下坡的话,down的值不变.而本次修改up的值后,下次一定是修改down的值。因为我们要找的就是上坡和下坡交替出现,所以根本没必要每次用Math.max()方法
class Solution {public int wiggleMaxLength(int[] nums) {int n = nums.length;if (n < 2) {return n;}int up = 1, down = 1;//将dp数组,换成两个变量for (int i = 1; i < n; i++) {if (nums[i] > nums[i - 1]) {//如果是上坡up = down + 1;//看前一个是不是上坡,不是就摆动+1} else if (nums[i] < nums[i - 1]) {down = up + 1;}}return Math.max(up, down);}
}

这篇关于java数据结构与算法刷题-----LeetCode376. 摆动序列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/818488

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

Spring Security--Architecture Overview

1 核心组件 这一节主要介绍一些在Spring Security中常见且核心的Java类,它们之间的依赖,构建起了整个框架。想要理解整个架构,最起码得对这些类眼熟。 1.1 SecurityContextHolder SecurityContextHolder用于存储安全上下文(security context)的信息。当前操作的用户是谁,该用户是否已经被认证,他拥有哪些角色权限…这些都被保

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第