python统计分析——单变量分布之量化变异度

2024-03-17 07:12

本文主要是介绍python统计分析——单变量分布之量化变异度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考资料:python统计分析【托马斯】

1、极差

        极差仅仅是最高值和最低值之间的差异。使用函数为:numpy.ptp()。代码如下:

import numpy as npx=np.arange(1,11)
np.ptp(x)

        ptp代表“峰值到峰值”,唯一应该注意的异常值,即数据点的值比其他数据高或低很多。通常,这些点是由于样本选择或测量过程中的错误引起的。

        有许多检查异常值的测试。其中之一检查那些高于第三分位数1.5×四分位距(IQR)或低于第一分位数1.5×四分位距(IQR)的数据。

2、百分位数

        弄懂百分位数的最简单方法,就是首先定义累计分布函数(CDF):

CDF(x)=\int_{-\infty }^{x}PDF(x)dx

        CDF是PDF(概率密度函数)从负无穷大到给定值的积分,因此确定了低于该值的数据的百分比。了解了CDF之后,计算在a~b范围内知道值x的可能性就简单了:在a和b之间找到值得概率可由该范围内PDF的积分得到,并且可以通过相应的CDF值的差来得到:

P(a\leqslant X\leqslant b)=\int_{a}^{b}PDF(x)dx=CDF(b)-CDF(a)

        对于离散分布来说,积分就由求和代替。

        回到百分位数:这些只是CDF的逆函数,其给出低于数据中特定百分比的数据的值。虽然“百分位数”这个表达并不常常出现,但经常会遇到特定的百分位数。如下:

        ①为了获得包含95%的数据范围,我们必须找到 样本分布的2.5分位数和97.5分位数。

        ②50分位数就是中位数。

        ③另一个重要的就是四分位数,即25和75分位数。它们之间的差值称为四分位距(IQR).

3、标准差和方差

        样本方差的极大似然估计如下:

var=\frac{\sum_{i=1}^n(x_i-\bar{x})^2}{n}

        但上式系统性地低估了总体方差,因此本称为总体方差的“有偏估计”。换句话说,如果你选择了特定总体标准差的人群,并且重复1000次从该人群中选择n个随机样本,并计算每个样本的标准偏差,则这些样本标准差的平均值将低于总体表标准差。

        我们总是使用样本均值,使得给定的样本数据方差最小化,从而低估了总体的方差。所以群体方差的最佳无偏估计应该是:

var=\frac{\sum_{i=1}^n(x_i-\bar{x})^2}{n-1}

        本式即为样本方差。

        标准差是方差的平方根,样本标准差是样本方差的平方根:

s=\sqrt{var}

        在统计学中通常用σ表示总体标准差,用s表示样本标准差。

        python标准差函数为:numpy.std(),方差函数为:numpy.var();参数设置可参考:python统计分析——单变量描述统计-CSDN博客

代码操作如下:

data=np.arange(7,14)
# numpy默认用n还计算方差和标准差,即ddof=0。
# 为了能够得到样本方差和标准差,须设置ddof=1
np.std(data,ddof=1)

4、标准误

        标准误是系数标准差的估计。对于正态分布的数据,均值的样本标准误差(SE或SEM)是:

SEM=\frac{s}{\sqrt{n}}=\sqrt{\frac{\sum_{i=1}^n(x_i-\bar{x})^2}{n-1}}\times \frac{1}{\sqrt{n}}

5、置信区间

        在数据的统计分析中,经常估计参数的置信区间。α%的置信区间(CI)表示包含参数的真实值的范围,其可能性为α%。

        如果采样分布式对称的和单峰的(也就是说,在最大值的两边平滑地衰减),通常可以用下面公式来估计置信区间:

ci=mean\pm std \times N_{PPF}(\frac{1-\alpha}{2})

        其中,std为标准差,N_PPF是标准正态分布分布的百分点函数(PPF)。要计算95%的双侧置信区间,须计算标准正态分布分布的PPF(0.025),来得到置信区间的上下限。

        注①:计算平均值的置信区间,标准差必须用标准误代替

        注②:如果分布是偏斜的,上面的公式就不再适用。

这篇关于python统计分析——单变量分布之量化变异度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/818207

相关文章

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re